
Multi-Language Support in TouchCORE
Maximilian Schiedermeier, Bowen Li, Ryan Languay,

Greta Freitag, Qiutan Wu, Jörg Kienzle
School of Computer Science

McGill University
Montreal, Canada

Maximilian.Schiedermeier,Bo.W.Li@mail.mcgill.ca
Ryan.Languay,Greta.Freitag,Qiutan.Wu@mail.mcgill.ca

Joerg.Kienzle@mcgill.ca

Hyacinth Ali, Ian Gauthier, Gunter Mussbacher
Department of

Electrical and Computer Engineering
McGill University
Montreal, Canada

Hyacinth.Ali@mail.mcgill.ca
Ian.Gauthier@mail.mcgill.ca
Gunter.Mussbacher@mcgill.ca

Abstract—TouchCORE is a multi-touch enabled modelling tool
aimed at developing scalable and reusable models. Up to recently,
TouchCORE was hard-coded to support only design modelling
with class, sequence, and state diagrams. This demonstration
paper presents the newest release of TouchCORE, TouchCORE
8, that features multi-language support through language plug-
ins and perspectives. The paper reviews what a language designer
needs to do to integrate a modelling language into the Touch-
CORE architecture, and how perspectives can be configured
to ensure consistency between multiple models. The generic
navigation facilities of TouchCORE are reviewed, and the generic
split-view GUI support for displaying multiple models side-by-
side together with inter-model consistency mappings is presented.

Index Terms—multi-view modelling, model consistency, inter-
model navigation, perspective

I. INTRODUCTION

TouchCORE was initially called TouchRAM, and conceived
as a multitouch-enabled tool for agile software design mod-
elling aimed at developing scalable and reusable software
design models [1]. TouchRAM exploits aspect-oriented model
weaving techniques as defined by the Reusable Aspect Models
(RAM) [2] approach to enable the designer to rapidly apply
reusable design concerns within the design models of the
software under development. RAM supports composition of
class diagrams, sequence diagrams, and state diagrams.

TouchRAM was then upgraded to add support for Concern-
Oriented Reuse (CORE) [3] (see Section II for more details
on CORE) and consequently renamed TouchCORE [4]. To
modularise a concern according to features, support for feature
diagrams was added. To perform trade-off analysis when
choosing between different variants of a concern, an impact
model – a variant of goal models – can be defined for a concern
that links features with high-level goals and qualities.

This demonstration paper presents the newest release of
TouchCORE, TouchCORE 8, that provides support for multi-
view modelling through language plug-ins and perspectives.
Section II presents a brief background on CORE. Section III
reviews what a language designer needs to do to integrate a
modelling language into the TouchCORE 8 architecture. Sec-
tion IV explains how perspectives can be configured to ensure
consistency between multiple models. The generic navigation

facilities of TouchCORE 8 are reviewed in Section V. The
generic split view GUI support for displaying multiple models
side by side together with inter-model consistency mappings
is presented in Section VI, and the last section draws some
conclusions and offers an outlook on next developments.

II. BACKGROUND AND MOTIVATION

CORE [3] combines the ideas of Model-Driven Engi-
neering (MDE), advanced modularization techniques (aspect-
orientation), and software product lines (SPL) technology to
streamline model reuse.

The main unit of reuse is called a concern. A concern groups
together software artifacts (models and code) describing prop-
erties and behaviour related to any domain of interest to a
software engineer, potentially at different levels of abstraction.
A concern provides three interfaces [5]: The variation inter-
face (VI) describes required design decisions and their impact
on high-level system qualities, both explicitly expressed using
feature and impact models in the concern specification. The
customization interface (CI) allows the chosen variation to be
adapted to a specific reuse context, while the usage interface
(UI) defines how the functionality encapsulated by a concern
may be used. CORE streamlines the reuse process by allowing
a developer to (a) choose a desired variant (from the VI), (b)
adapt the chosen models to the reuse context (with the CI),
and then (c) use the resulting model (according to the UI).

The TouchCORE tool is implemented in Java on top of
the Eclipse Modelling Framework (EMF). Java and Maven
code generation is implemented using Acceleo. The Graphical
User Interface is decoupled from the backend using the Model-
View-Controller design. The controllers for manipulating mod-
els use command-based editing provided by EMF.edit in order
to offer undo/redo functionality. The current model editors use
the Multitouch for Java (MT4J) framework for rendering the
models using OpenGL and dealing with mouse, keyboard and
multitouch input.

Although previous versions of TouchCORE support dif-
ferent modelling languages for design, internally they are
encoded in a single metamodel that integrates class, sequence,
and state diagrams. Evolving such an integrated metamodel
was very tedious. Furthermore, the integration of the languages



Fig. 1. Use Case Modelling Language Metamodel (Excerpt)

in the metamodel is specifically designed for these three
diagrams for modelling software designs. As a result, old
versions of TouchCORE are not well suited for creating,
for example, domain models using the class diagram editor,
where some class diagram elements such as operations are not
supposed to be used. This is the main reason why TouchCORE
was completely redesigned to support plug-in languages and
perspectives as described in the remainder of the paper.

III. LANGUAGE PLUG-INS

This section describes the requirements for integrating a
modelling language into TouchCORE 8.

A. Metamodel

Since TouchCORE 8 is based on EMF, modelling languages
have to be defined using a metamodel. TouchCORE has no
requirements on the language metamodel itself, i.e., any exist-
ing modelling language metamodel expressed in Ecore can be
used. For example, Fig. 1 shows (parts of) the metamodel of a
use case modelling language that now is part of TouchCORE
8, including Actor and UseCase metaclasses.

In order to support the complete independence of plug-
in language metamodels, the additional information needed
to support concern-oriented reuse of models is encoded in a
separate CORE metamodel. For each model that is part of
a concern, the CORE metamodel stores the information on
which feature the model belongs to, and what model elements
are part of the customization and usage interface of the model.
Furthermore, when a model reuses another model, the CORE
metamodel stores the concern reuse, the feature selections, and
the model element customization mappings.

B. Language Actions

TouchCORE expects that a modelling language defines a
set of language actions for creating and updating models.
Language actions are at a higher level than the typical CRUD
operations such as the ones automatically generated by EMF.
A language action performs potentially several CRUD opera-
tions that together result in one coherent update on a model.

For example, for the use case modelling language, the
language action createActor instantiates the metaclass

Actor and inserts the newly created instance into the collection
of actors of the UseCaseModel root object.

TouchCORE 8 defines a domain-specific language for spec-
ifying language plug-ins. Listing 1 shows the definition of the
use case modelling language plug-in. Lines 2-7 provide data
that TouchCORE needs to correctly register the metamodel of
the language with EMF, and to load the Java controller classes
implementing the language actions and the model weaver.

Our DSL also provides an optional means to explicitly
expose language metaclasses so that they can later be used
as part of consistency constraints enforced by a perspective
(see Section IV). For the use case modelling language this
is illustrated in Lines 8-12, which expose the UseCaseModel
and Actor metaclasses. Lines 13 and onward demonstrate how
to define language actions. In our example, a createActor
language action is defined that creates instances of the meta-
class Actor. The implementation of the action is provided in
the Java controller class UseCaseController.

Listing 1. Defining the Use Case Language Plug-In with our Language DSL

1 language UseCaseLanguage {
2 nsURI "http://cs.mcgill.ca/sel/uc/1.0";
3 resourceFactory "usecasesResourceFactoryImpl";
4 adapterFactory

"usecasesItemProviderAdapterFactory";
5 fileExtension uc;
6 rootControllerPackage "usecases.controller";
7 weaver "ca.mcgill.sel.usecases.language

.weaver.UseCaseWeaver";
8 language elements {
9 languageElement UseCaseModel { }
10 languageElement Actor {
11 nestedElement NamedElement_Name;
12 } }
13 actions {
14 create createActor(UseCaseModel owner,

String name, ...) {
15 metaclass Actor;
16 classQualifiedName UseCaseController();
17 } } }

C. Graphical User Interface

TouchCORE 8 does not provide a generic GUI editor for
plug-in languages. However, it offers implementations of a
large selection of standard widgets and controls that are useful
when implementing model editors, ranging from boxes to
connecting lines to selector popups and menus. It also provides
support for assisted and automated layout.

In theory it is not mandatory to implement a GUI editor in
order to use a language in conjunction with TouchCORE. Ex-
isting standalone editors could also be used to create and edit
models, and then the models can simply be associated with a
feature of a concern to be managed by TouchCORE. However,
in order to ensure inter-model consistency, TouchCORE must
be able to invoke the language actions through some provided
interface. Likewise, in order to support concern-oriented model
reuse, a weaver needs to be implemented for the language (see
the following subsection).

Figures 2, 3, and 4 show screenshots of GUI editors that
are available for some of the language plug-ins.



Fig. 2. Use Case Model of the Bank

Fig. 3. Environment Model of the Bank

Figure 2 depicts a use case diagram for a Bank system with
three kinds of actors, i.e., Managers, Clerks, and Customers,
that pursue the goals of managing funds, opening and closing
bank accounts, as well as withdrawing and depositing money.

Another language plug-in GUI for creating environment
models is shown in Fig. 3. An environment model is a kind of
UML communication diagram that can be used for specifying
the system interface during requirements engineering. Our
Bank environment model example shows again the three
actors, and specifies the detailed signatures of the input and
output messages that the Bank system receives and produces.

Fig. 4. ResTL Model Defining REST Resources and Methods for the Bank

The last screenshot presents a GUI editor for ResTL,
a DSML that was created to model resources and access
methods. ResTL assists the design of REST interfaces for
distributed systems, notably in the context of the microser-
vice architectural style. RESTful service interfaces consist
of hierarchically structured resources with selected CRUD
operations [6] (Create, Read, Update, Delete) enabled. Those
operations are commonly invoked over HTTP as Put, Get,
Post, and Delete requests. Figure 4 shows a possible resource
layout for the Bank system, defining resource based URLs and
access methods to trigger account creation and authentication,
among others.

D. Weaver

Finally, in order to take advantage of the modularization
and reuse capabilities of CORE, a modelling language must
also provide a weaver. A weaver is an implementation of a
model transformation that takes as input two models of the
language, a source and a target model, as well as a compo-
sition specification consisting of a set of mappings that relate
model elements from the source model with model elements
of the target model. The weaver composition algorithm must
integrate the model elements from the source model with
the model elements of the target model according to the
composition specification.

TouchCORE currently supports weaving of class diagrams,
sequence diagrams, and environment models. The weavers for
use case diagrams and ResTL models are under development.

IV. PERSPECTIVES

In MDE, a system under development is typically modelled
at multiple levels of abstraction and from different points
of view. Each model is expressed using the modelling lan-
guage that provides the most appropriate language concepts
for expressing the desired properties. While this promotes
modularity and separation of concerns, care must be taken
that the views describe the system coherently, i.e., there are
no inconsistencies.

TouchCORE 8 supports multi-view modelling with the con-
cept of perspectives. A perspective encapsulates one or several
plug-in languages intended to be used for a specific modelling
purpose. Depending on the purpose, the perspective exposes
all or a subset of the language actions of the encapsulated
languages as perspective actions that the modeller can use
to create and edit models. To ensure consistency between
the models, the perspective synchronizes the execution of
language actions and keeps track of consistency links between
model elements in different models, if needed.

In a perspective, a language plays one or more roles.
An example of a single-language perspective is a domain
modelling perspective, where a class diagram language is used
for the purpose of domain modelling, i.e., it plays the domain
modelling role. In this case, some class diagram language
actions such as addOperation are not available to the user,
because none of the classes should declare any operations in
a domain model.



A more interesting example perspective is a multi-language
perspective for requirements elicitation that combines the class
diagram language and the use case modelling language. The
purpose of the perspective is to allow the modeller to capture
the concepts of the problem domain and their relationships
with a domain model, and specify the goals and services that
the system provides as well as the entities with which the
system interacts by means of a use case diagram.

Listing 2. Defining the Requirements Elicitation Perspective

1 perspective RequirementsElicitation {
2 default Domain_Model;
3 languages {
4 existing language ClassDiagram {
5 roleName Domain_Model;
6 }
7 existing language UseCaseLanguage {
8 roleName Use_Case_Model;
9 }
10 }
11 actions {
12 action redefined Domain_Model

"ClassDiagramController.createClass";
13 action reexposed Domain_Model

"ClassDiagramController.createAttribute";
14 ...
15 action redefined Use_Case_Model

"UseCaseController.createActor";
16 ...
17 }
18 mappings {
19 mapping DMClass_UCActor {
20 fromCardinality 1;
21 toCardinality 0..1;
22 fromElement Class from Domain_Model;
23 toElement Actor from UseCase_Model;
24 nested mappings {
25 nested mapping ClassName_ActorName {
26 matchMaker true;
27 fromElement "name" from

Domain_Model;
28 toElement "name" from

UseCase_Model;
29 } } } } }

Listing 2 shows how the RequirementsElicitation perspec-
tive is defined in TouchCORE using the provided perspective
DSL. Lines 2-10 declare the languages that are used in the
perspective, and the roles they play. Lines 11 to 17 illustrate
how the perspective engineer specifies which language actions
to expose as perspective actions. For example, since during
requirements elicitation classes in the domain model can have
attributes, line 13 specifies that the createAttribute
language action provided by the class diagram language should
be available as is in the domain model view. In other words,
the createAttribute language action is reexposed as a
perspective action.

Lines 12 and 15 instruct TouchCORE to expose the
createClass language action of the class diagram language
and the createActor language action of the use case
modelling language as perspective actions, but to instrument
their execution to ensure consistency between the two models.
In fact, lines 18 to 29 specify a consistency link between
classes in the domain model and actors in the use case model:

every actor in the use case model must have a corresponding
class in the domain model. Conversely, classes in the domain
model may be linked to actors in the use case model, but do
not have to be. Line 26 states that the name attribute is used
to determine matches between classes and actors.

Based on this specification, TouchCORE automatically en-
sures that whenever an actor is created in the use case model,
the domain model is searched for a class that has the same
name. If such a class is found, a consistency link is established
connecting the actor and the found class. If no such class
is found, a new class is created with the same name, and a
consistency link is established. Once linked, TouchCORE will
make sure that whenever the name of one of the entities is
changed, the other one is updated as well.

V. GENERIC NAVIGATION

The GUI of TouchCORE 7 already displays a navigation bar
at the top of the screen that shows a modeller which model
is currently being displayed, and which feature that model is
associated with. Furthermore, the navigation bar allows the
modeller to navigate from model element to model element
within a design model. For example, it is possible to navigate
from a design class to its superclasses.

Since TouchCORE 8 now supports language plug-ins and
multi-view modelling, the navigation bar has been rewritten
to be completely generic. The CORE metamodel has been
extended to support the definition of intra-language and inter-
language navigation [7]. As a result, a language designer can
now specify in the language plug-in definition which links
in the language metamodel should be navigable from the
navigation bar. Likewise, a perspective designer can specify
which consistency links should be navigable. Whenever a
model is being displayed, the generic navigation bar now
updates the provided navigation facilities automatically based
on these definitions.

Figure 5 showcases the navigation possibilities offered by
the navigation bar when opening the Bank domain model in
the requirements elicitation perspective. From the class Clerk,
it is possible to navigate to its superclass Employee (an intra-
model navigation), but also to the actor Clerk in the linked
use case model (an inter-model navigation).

VI. GENERIC SPLIT VIEW

MDE and especially multi-view modelling promotes separa-
tion of concerns by allowing a modeller to focus on one view
of the system under development in isolation. It is nevertheless
useful to be able to visualize several models simultaneously,
e.g., to gain an understanding of how the different views work
together and to verify that they are consistent.

To this aim, TouchCORE 8 now provides a generic split
view that can simultaneously display two GUI editors on the
screen, separated by a horizontal or vertical line. Each editor
remains fully functional, as the split view simply passes the
user’s interactions to the appropriate editor. As a result, the
displayed models can be edited in the same way than in the
single model display mode.



Fig. 5. Navigation Possibilities in the Domain Model View of the Requirements Elicitation Perspective

Fig. 6. Use Case Model and Domain Model Visualized Side-By-Side Using the Generic Split View

Additionally, the split view can also display the consistency
links established between the models used in a perspective.
For example, in the Requirements Elicitation perspective, the
split view visualizes the consistency links between Actors in
the Use Case Model and Classes in the Domain Model as
illustrated in the screenshot shown in Fig. 6.

The split view also supports creation of consistency links.
For example REST resources and CRUD methods of the Bank
can be displayed simultaneously using ResTL (see Fig. 4), and
a design model implementing the offered services. Then the
split view can be used to establish links between the CRUD
endpoints in ResTL and the operations of the design classes
that implement the offered functionality. Support for consis-
tency links is completely generic, as in the CORE metamodel
mappings between models relate EObjects to EObjects.

VII. CONCLUSION AND OUTLOOK

This tools paper presents the new multi-view modelling
support of TouchCORE 8. We described the four prerequisites
– metamodel, language actions, GUI, and weaver – that a lan-
guage needs to provide to integrate fully with TouchCORE. We
show how to define language plug-ins and perspectives with
the provided DSL. We describe the generic navigation support
offered by the navigation bar, and showcase the generic split
view that displays two models of the same perspective side-
by-side.

The next major development effort on TouchCORE migrates
the tool to a distributed client-server architecture that will
allow us to support collaborative modelling.

REFERENCES

[1] W. Al Abed, V. Bonnet, M. Schöttle, O. Alam, and J. Kienzle,
“TouchRAM: A multitouch-enabled tool for aspect-oriented software
design,” in 5th International Conference on Software Language Engi-
neering, ser. LNCS, no. 7745. Springer, October 2012, pp. 275 – 285.

[2] J. Kienzle, W. Al Abed, and J. Klein, “Aspect-Oriented Multi-View
Modeling,” in Proceedings of the 8th International Conference on Aspect-
Oriented Software Development. ACM Press, March 2009, pp. 87 – 98.

[3] O. Alam, J. Kienzle, and G. Mussbacher, “Concern-oriented software
design,” in Proceedings of the 16th International Conference on Model-
Driven Engineering Languages and Systems, ser. Lecture Notes in Com-
puter Science, vol. 8107. Springer, 2013, pp. 604–621.

[4] M. Schöttle, N. Thimmegowda, O. Alam, J. Kienzle, and G. Mussbacher,
“Feature modelling and traceability for concern-driven software develop-
ment with TouchCORE,” in Companion Proceedings of the 14th Inter-
national Conference on Modularity, MODULARITY 2015, Fort Collins,
CO, USA, March 16 - 19, 2015, March 2015, pp. 11–14.

[5] J. Kienzle, G. Mussbacher, O. Alam, M. Schöttle, N. Belloir, P. Collet,
B. Combemale, J. DeAntoni, J. Klein, and B. Rumpe, “VCU: The three
dimensions of reuse,” in International Conference on Software Reuse,
ICSR 2016, Limassol, Cyprus, June 5-7, 2016, ser. LNCS. Springer,
June 2016, no. 9679, pp. 122–137.

[6] R. T. Fielding, Architectural styles and the design of network-based
software architectures. University of California, Irvine, 2000, vol. 7.

[7] H. Ali, G. Mussbacher, and J. Kienzle, “Generic graphical navigation
for modelling tools,” in Proceedings of the 11th System Analysis and
Modelling Conference, ser. LNCS 11853. Springer, 2019, pp. 44–60.



APPENDIX

In this appendix, we briefly outline the TouchCORE 8
demonstration steps. There are two parts of this tool demon-
stration: single-language perspective and multi-language per-
spective.

Single-Language Perspective Demonstration: A single
language perspective reuses only one language for a modelling
purpose. This first part of the tool demonstration shows how
a perspective designer defines and then uses a single-language
perspective. The outline is as follows:

• First, we show how a perspective designer defines a
single-language perspective which reuses a class diagram
language for requirement elicitation. Hence, the class
diagram language plays a domain modelling role in the
single-language perspective. The presenter, playing the
role of a perspective designer, will first show how to
register the class diagram language as a language plug-in
using the DSL of the TouchCORE tool (see Fig. 7). Then,
the designer defines a domain modelling perspective
which reuses the class diagram for the domain modelling
purpose, as shown in Fig. 8.

• Second, the perspective designer launches the Touch-
CORE tool to show the functionalities supported by the
single-language perspective (domain modelling perspec-
tive). In this perspective, the create operation language
action is hidden from the user, while other language
actions are re-exposed (see sample model in Fig. 9).

• And finally, the perspective designer demonstrates other
existing single-language perspectives in the tool, includ-
ing the environment model perspective, the use case mod-
elling perspective, and the ResTL modelling perspective.

Multi-Language Perspective Demonstration: A multi-
language perspective combines more than one language for a
modelling purpose. This second part of the tool demonstration
shows how a perspective designer defines and then uses a
multi-language perspective. The outline is as follows:

• First, we show how a perspective designer defines a
multi-language perspective that reuses the class diagram
language (playing a domain modelling role) and the
use case modelling language for requirement elicitation
purpose. At this step, both the class diagram language
and use case modelling language are registered in the tool.
Hence, the designer defines a multi-language perspective
(requirement elicitation perspective) which reuses the
two languages, as shown in Listing 2. At this step, we
show how the perspective establishes a correspondence
between the Class metaclass from the class diagram
language and the Actor metaclass from the use case
modelling language. Additionally, we demonstrate how
the perspective redefines some language actions from
both languages to maintain consistency between the two
models using this established relationship.

• Second, the perspective designer launches the Touch-
CORE tool to show the functionalities supported by
the newly created requirement elicitation perspective.

Fig. 7. Defining the Class Diagram Language Plug-In with our DSL

Fig. 8. Defining the Domain Model Perspective with our DSL

Fig. 9. Domain Model



Again, the create operation language action from the
class diagram language action is hidden from the user in
the domain modelling view. In addition, creating an actor
(redefined action) in the use case model automatically
creates a corresponding class in the domain model.

• Third, we show how a user can navigate between model
elements within a single model as well as across different
models from a different languages.

• And finally, we demonstrate the TouchCORE split view,
which shows two models side-by-side (see Fig. 6), each
using a different modelling language. Also, we use the
split view to create a mapping between two elements
and then visualize the mapping to the user. In this
demonstration, we show several mappings, each between
a pair of a class and an actor from the class diagram
language and use case modelling language, respectively.


