
Give me some REST: A Controlled Experiment to Study Effects
and Perception of Model-Driven Engineering with a

Domain-Specific Language
Maximilian Schiedermeier

schiedermeier.maximilian@uqam.ca
Université du Québec à Montréal

McGill University
Montréal, Canada

Jörg Kienzle
joerg.kienzle@{uma.es/mcgill.ca}

ITIS Software, University of Málaga /
McGill University

Málaga, Spain / Montréal, Canada

Bettina Kemme
kemme@cs.mcgill.ca
McGill University
Montréal, Canada

Abstract
Domain-Specific Languages (DSLs) are an efficientmeans to counter
accidental complexity and are therefore a key technology for Model-
Driven Engineering (MDE). Despite DSLs’ potential, there is a lack
of empirical research regarding the practical effects and developer
perception of DSL-driven tools. In this paper, we present a con-
trolled experiment with 28 participants around a previously devel-
oped DSL-based toolchain, which assists the migration of legacy
software to REST. A direct comparison of developer performance
for a) “DSL toolchain" and b) “classic manual software migration"
allowed for analysis, quantification of effects and developer percep-
tion, as well as reasoning on general advantages, and DSL-related
challenges. In certain cases, we measured a significant correlation
between toolchain use and performance gains for developers. De-
tailed analysis of developer activities suggests the DSL toolchain
alleviates tasks which show error-prone or time-consuming in the
manual alternative. We then extracted acceptance-hindering factors
from participant feedback and derived a series of recommendations
for MDE practitioners who seek to develop DSL-based tools.

CCS Concepts
• Software and its engineering → Domain specific languages;
• Information systems→ RESTful web services.

Keywords
DSL, MDE, REST, controlled experiment, empirical study, software
quality

ACM Reference Format:
Maximilian Schiedermeier, Jörg Kienzle, and Bettina Kemme. 2024. Give me
some REST: A Controlled Experiment to Study Effects and Perception of
Model-Driven Engineering with a Domain-Specific Language. In ACM/IEEE
27th International Conference on Model Driven Engineering Languages and
Systems (MODELS ’24), September 22–27, 2024, Linz, Austria. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3640310.3674080

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS ’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0504-5/24/09
https://doi.org/10.1145/3640310.3674080

1 Motivation
Domain Specific Modelling languages have been used in comput-
ing since the early days [42]. By reifying concepts of the problem
domain in the language, DSLs mitigate accidental complexity [1]
and consequently, DSLs are often used in combination with general
purpose languages (GPLs) to develop larger software systems [14].
Although the integration of DLSs by generating code and then com-
bining it with the remainder of the code base and software system is
common [22, 26, 47], a systematic integration with GPL-based MDE
is challenging: existing toolchains, i.e. series of GPL model transfor-
mations and refinements, cannot readily consume DSL languages
or compose models not expressed in the same language [24].

To overcome this challenge, we previously proposed the FIDDLR
framework [38], which defines clear, minimally-invasive tasks to
integrate a DSL with an existing MDE pipeline, maximizing reusing
of existing MDE tools and model transformations. We reasoned
the framework renders the creation of DSL-based tool chains more
attainable. We illustrated our approach on a representative and
industrially relevant [9, 34] engineering task, namely, the migra-
tion of legacy code to cloud-ready services [15, 31]. The presented
approach involves extracting and exposing legacy functionality
through a new REST interface [11, 12].

Our previous publication showed quantitative evidence that a
DSL+MDE, i.e. a DSL toolchain, requires less developer effort than
a manual migration1, but did not provide empirical evidence the
approach provides benefits in practice. As such it remains unclear
whether such DSL toolchains are a viable concept with measur-
able and substantial benefits compared to a manual code migration.
The shortness of empirical evidence is an acknowledged ongoing
issue in the MDE community [4, 18, 19, 29]. Therefore, we ad-
dress this issue by reporting on a controlled experiment with 28
software developers to test the hypothesis of a beneficial DSL
toolchain effect and better understand the impact of using
a DSL toolchain instead of manual code modifications. All
the data from our study is available publicly 2. Similar to related SE
1We previously compared the number of required modeling actions to the number of
lines of code that had to be added, removed or modified.
2Data Availability Statement: Our research was conducted with great care for trans-
parency and reproducibility. We have prepared a browser-navigable replication pack-
age at https://m5c.github.io/RestifyReplicationPackage/, as well as an archived snap-
shot [37] with all raw data (except screen recordings), participant source code, model
submissions, and CSV files with transcripts of all collected footage. The package in-
cludes time measurements, participant feedback, and observations from 72 hours of
video footage. The bundle also contains a Jupyter notebook, including docker support
for convenient replication of test results. We also provide source code and documenta-
tion for all tools implemented for the realization of the study, as well as recruitment
material.

https://conf.researchr.org/track/models-2024/models-2024-artifact-evaluation#Submission-Guidelines-
https://conf.researchr.org/track/models-2024/models-2024-artifact-evaluation#Submission-Guidelines-
https://orcid.org/0000-0001-6318-5610
https://orcid.org/0000-0001-6611-5431
https://orcid.org/0000-0003-4694-4923
https://doi.org/10.1145/3640310.3674080
https://doi.org/10.1145/3640310.3674080
https://m5c.github.io/RestifyReplicationPackage/

MODELS ’24, September 22–27, 2024, Linz, Austria Schiedermeier et al.

work [8], we measured engineering efficiency based on two con-
structs: “time to task completion” and “correctness of the outcome”.
The study allowed us to a) measure a beneficial effect of a DSL-
based toolchain extension on software practitioners for the target
engineering task, b) obtain qualitative observations to better under-
stand how the suggested DSL extension contributes to the target
task, and c) investigate developer bias and derive recommendations
to improve developer acceptance of DSL toolchains.

The remaining structure of this article strongly orients on the
reporting recommendations by Wohlin et al. [49] and Jedlitschka &
Pfahl [20] for empirical software engineering research. The paper
concludes with a recapitulation of the experiment insights, with
emphasis on the inferred recommendations to further improve the
acceptance of DSL toolchains.

2 Background and Related Work
2.1 Background
In the first part of this section, we first briefly recall the background
on controlled experiments in software engineering, and then outline
a DSL and associated MDE-based toolchain for migrating legacy
applications to offer services following the REST style [12]. In the
second part, we present related work on controlled experiments
involving MDE and DSLs.

2.1.1 Controlled Experiments in SE. Empirical research originated
in a medical context, e.g., the testing of drug treatments on pa-
tients, to gain insights on the drug’s effects [5, 7]. The established
methodologies have been adopted by Computer Science researchers,
leading to a framework for the correct application of empirical re-
search methods in our field [40]. Best reporting practices include
using the correct terminology and a template structure [20, 35, 49].

Crossover Layouts. The design chosen for our study is a vari-
ant of the crossover layout [7], where a sequence of treatments
and observations are conducted on the same subject (human par-
ticipant). Individual pairs of treatment and observation are also
called experiment periods. Cross-over layouts, as repeated measures
experiments, have the advantage of producing multiple samples
per subject. However, the layout also introduces new challenges.
Measurements of the same variable on the same subject are not
independent, which must be taken into account when selecting
appropriate statistical tests [43].

Carryover, Blocking Variables and Factorial Design. Re-
peatedmeasures experiments also need to consider carryover, which
is the unintentional measurement of the effects of a previous pe-
riod’s treatment. If, e.g., first a new drug and afterwards a placebo
were used as treatments on the same subject, the observation for
the placebo period can be influenced by the lasting effects of the
previous drug treatment.

For Software Engineering experiments, a common strategy to
overcome this issue is the introduction of a blocking variable [5],
that is, a contextual object that changes between periods to mitigate
carryover. For instance, Ceccato et al. [6] investigated two software
obfuscation strategies (treatments). Each strategy was applied to
a different software application (object), so that the knowledge
obtained in the first period did not influence the second period. A

factorial crossover design then refers to forming sequences based on
all experiment factors, e.g. treatment, object and order.

Statistical Analysis. Typically, an experiment seeks to deter-
mine relationships between explanatory variables (e.g., taking the
tested drug), and construct variables (e.g., capturing health improve-
ments). To do so, a Null Hypothesis, assuming no correlation, is
formulated. A statistical test can then, based on the presented data,
reject the null hypothesis, meaning there is a significant correlation.
Only rejection of a Null Hypothesis is a conclusive result; failure
to reject does in turn not mean that the hypothesis is true [48].

Factorial crossover layouts showcase multiple factors or explana-
tory variables. It is therefore insufficient to only investigate the
assumed most plausible one - even if a statistically significant cor-
relation is observed, other factors might be even more relevant.
For this layout, linear models are a recommended analysis start,
for they give a preliminary estimation of how individual factors
contribute to the observed effects [43].

2.1.2 Migration to REST. REST interfaces constitute a layer of
abstraction that conceals functionality behind hierarchically struc-
tured resources, accessible over HTTP via CRUD operations (Create,
Read, Update, Delete) [11].

Especially the appearance of Micro-service architectures has
made REST-based service interfaces a popular approach, and as
a result, the migration of legacy code to a RESTful service is an
industrially relevant, yet challenging task [3].

To achieve such migration, one has to conceptually a) design
a hierarchical resource tree, b) assign operations on individual
resources to appropriate HTTP request types, and finally c) map as-
signed operations to methods in the legacy application [12]. In prac-
tice, platforms that support REST, e.g., the Spring framework [44],
introduce additional development complexity. Steps a), b) and c) are
done implicitly through code annotations, attached to the signatures
of legacy code methods. Furthermore, non-trivial configuration files
and compilation dependencies have to be specified.

DSL and MDE Support for REST. Because the REST resource
tree crosscuts the module structure of the application functionality,
REST annotations often end up scattered over the code. It is unclear
how the lack of a global perspective on the produced API structure
and the distraction caused by technical details affect the developer.

Consequently, several DSLs have been proposed for REST that ac-
curately capture the nature of resources and CRUD operations with
tailored concepts: The RESTful API Modeling Language (RAML) [32]
and theWeb Application Description Language (WADL) [13] are both
textual and low-level, OAS/Swagger [41] puts the focus on a ma-
chine parsable JSON format for stub code generation, and finally,
the Web Resource Modeling Language (WRML) [30] raises the level
of abstraction with a resource tree representation. Yet, none of
these DSLs were crafted specifically for the migration of legacy
software. Similarly, the semi-automated, and model-driven migra-
tion of legacy applications to REST has been discussed before [36],
however not setting on a REST- or migration-oriented DSL.

For this study we therefore used ResTL, a graphical DSL specifi-
cally designed for modelling the specification of hierarchically ar-
ranged resources [38]. ResTLwas integrated with anMDE toolchain
and TouchCORE [23], an open-source academic modelling tool for
concern-oriented software design. The tool allows the developer to

Give me some REST MODELS ’24, September 22–27, 2024, Linz, Austria

specify mappings of the REST endpoints to existing functionality.
The MDE pipeline provided by TouchCORE, which includes model
weavers and code generators, takes care of generating the REST-
related source code. As a result, the developer does not have to deal
with the scattering of annotations throughout the original code
base, as well as from configuring the chosen REST implementation
framework. More details on the DSL+MDE process and how it is
experienced by the ResTL user are covered in Section 3.2.

2.2 Related Work
DSLs have been shown to increase productivity, in particular be-
cause they raise the level of abstraction away from implemen-
tation details, and because of the gain in correctness and speed
thanks to code generation [16, 47]. For example, [22] reports the
results of an experiment in which a template-based approach and a
DSL approach to software generation were compared. Several sub-
jects were monitored while performing several development and
maintenance tasks using DSL technology and alternative template
technology. Flexibility, productivity, reliability, and usability were
measured. The DSL approach scored better on all counts. More
recently, [26] ran a controlled experiment where developers had to
perform a program comprehension task either using a DSL or using
the corresponding API in a GPL. Results showed that developers
are significantly more accurate and efficient when using DSLs than
when using GPLs. Finally, [2] presents two scientific applications
in which the use of DSLs added value by raising the level of abstrac-
tion and enabling project-level reasoning. However, no controlled
experiment was conducted in this case.

At an OOPSLA panel in 2008 on the advantages and problems
associated with DSLs, academic and industrial researchers as well
as commercial tool vendors identified several difficulties in working
with DSLs [17]. While the actual development of the DSL itself is
challenging, several panellists also mentioned that they witnessed
how developers in both academia and industry are generally reluc-
tant to learn new languages.

Over the past years, several research groups have contributed to
fostering a better understanding of various aspects of DSLs, MDE,
or toolchain effects. [19] and [18] set on thorough qualitative and
quantitative methods to interview professional practitioners and
better understand the various social, technical and organizational
factors that influence the success or failure of MDE techniques in
SE industry. The authors also condensed their observations to a
series of recommendations for the MDE community, as orientation
for when and how to best apply MDE. Notably, the authors found
that the widely assumed merits of code generation are less relevant
to practitioners than other merits, e.g. contribution to architectural
documentation.

Several research groups used controlled experiments to better
quantify and understand the effects of individual factors. [29] con-
ducted a crossover layout study to investigate howMDE contributes
to maintainability tasks in a web application context in compari-
son to a manual approach. The authors measure the correctness of
performed developer tasks and the time required for completion
and observe a significant performance gain for the MDE approach.
Similarly, [8] describes a controlled experiment in crossover layout
to compare DSL vs. GPL behavioural modelling approaches in a

video game context. The authors then studied gains concerning task
correctness and efficiency metrics and related them to subjective
developer feedback on perceived model usefulness. A side insight of
the study is that independent of generally high model correctness,
participants regard models as sketches rather than programs. [27]
describes an experiment to assess whether the reduced accidental
complexity associated with DSLs impacts developer understanding
of API usage in direct comparison to a GPL counterpart. The au-
thors set on correctness and efficiency (time) constructs across three
experiments and conclude significant improvements for both met-
rics when using the DSL approach. Finally, controlled experiments
have also been conducted in the context of REST. [39] describes
an experiment to compare developer understanding of REST API
usage, once more assessed using correctness and efficiency (time)
constructs.

Despite these significant contributions, no research has been
conducted to measure and understand the effects of a DSL-extended
tool chain. Especially concerning migrating legacy software to
REST, there is no related empirical work, to better understand tool
chain effects in direct comparison to a manual migration. A better
understanding in this context seems especially important, given
the migration of legacy software is an ongoing, unresolved and
industrially highly relevant challenge.

3 Experimental Design
We applied a two-treatment factorial crossover design with a level-two
blocking variable. In simple terms, this layout allows for a fair com-
parison of two alternative software migration techniques, where
every participant produces two samples: One from a software mi-
gration using a ResTL DSL with an associated MDE toolchain, and
the other from the manual migration of the legacy source code
using an IDE. Table 1 illustrates the resulting study design. The
interest of this layout is to support a comparison of the two soft-
ware migration techniques, concerning the quality of the outcome
and time needed for the migration process. We set on two vari-
ables for this comparison: correctness of the migrated software, by
a test pass-rate construct, and migration efficiency via task solve
time from start to end of the migration process. We assess whether
migration methodology (treatment) or task order correlates to a
significant performance gain for the dependent variables. We use
linear models to estimate the relevance of methodology and order
as experiment factors (explanatory variables) and estimate effect
size by comparing pass rates and task-solve-time distributions. Ad-
ditionally, the layout allows us to correlate variable measurements
to qualitative observations, in support of a better understanding of
DSL toolchain effects.

3.1 Layout Details
While each study participant applies both techniques (treatments),
no participant ever works twice on the same legacy software (ob-
ject), and we also do not directly compare samples obtained from
the same subject. Alternating the legacy software (object) between
the first and second migration task serves as a two-level blocking
variable, where “two level" indicates the two software alternatives.

We want to consider as many factors as possible, therefore the or-
der of migration technique applied (treatment) and legacy software

MODELS ’24, September 22–27, 2024, Linz, Austria Schiedermeier et al.

Experimental Design Task 1: Treatment + Object Task 2: Treatment + Object
Group I (Red) DSL Migration + BookStore Manual Migration + Xox
Group II (Green) Manual Migration + BookStore DSL Migration + Xox
Group III (Blue) DSL Migration + Xox Manual Migration + BookStore
Group IV (Yellow) Manual Migration + Xox DSL Migration + BookStore

Table 1: Two-Treatment Factorial Crossover Design

worked with (object) is not identical for all participants (subjects).
Each combination of migration technique (treatment) and legacy
application to migrate (object) forms a study task. A study period
consists of a task performed and the corresponding data collection
(observation). The four resulting combinations of tasks (combina-
tion of object and treatment) form four experiment sequences.

For fairness we allocate the same number of participants to each
of the four sequences, i.e. we divide our population into four equally
sized groups (labelled I-IV and corresponding colour).

3.2 Treatments
Migration using a DSL toolchain: The DSL-oriented approach

does not require any manual coding. The TouchCORE modelling
tool can load and interpret legacy sources to extract and visualize
structural program information as class diagrams. Using the specific
ResTL DSL editor, the user graphically designs the desired REST
resource tree and CRUD operations. Afterwards, they graphically
map those resource operations to individual methods of the legacy
code. Figure 1 illustrates how the tool is perceived by a user. No
additional action is required from the developer, for the tool ap-
plies model transformation and composition techniques to generate
source code and a build configuration file. The resulting service is
compiled and deployed with a maven command.

Figure 1: Capture of the DSL toolchain in action: The ResTL
DSL (left) represents a REST resource tree. Blue lines aremap-
pings of CRUD operations (circles) on operations in a class
diagram. The yellow line is the user establishing a mapping
of a placeholder resource to an operation parameter.

Manual Migration: Manual migration translates to modifying
the legacy application’s source code by hand. The developer loads
the legacy sources in their Integrated Developer Environment (IDE)
and then adds support for the REST technology of their choice.
For the study, we restricted the technology choice to Spring Boot,
which is a reasonable choice due to its widespread use. According to
the 2018 JVM Ecosystem Report, a survey based on 10,200 question-
naires, Spring Boot is the most popular Java web framework [28].

Regarding the IDE, participants were encouraged, but not man-
dated, to use the same IDE as used in the task illustration material,
namely the IntelliJ IDEA. After modifying the build configuration to
support Spring, the developer has to add REST-technology-specific
annotations to the code to expose operations. Correct integration of
Spring also requires writing some boilerplate code and adjustment
of project configuration files.

3.3 Objects
Both legacy application objects were crafted as study objects for
migration to REST. They are written in Java, have no JDK-external
dependencies, include a simple maven build configuration, have
100% test coverage, and are extensively commented.

The BookStore: The first legacy application imitates the func-
tionality of a common e-commerce scenario. API calls allow for
indexing books by ISBN, maintaining reader feedback and accessing
stock information for available book copies in stores. Migration of
the BookStore requires the re-exposure of 12 API methods.

Xox: The second object is a re-implementation of the turn-based
two-player game Tic-Tac-Toe (referred to as “Xox", paraphrasing the
Xes and Os on the board). The Xox API allows players to participate
in parallel game instances, following the blackboard pattern. The
implementation was created to match the semantic complexity of
the BookStore while changing the domain. Migration of Xox to a
RESTful service requires re-exposure of 8 API methods.

Regarding the source lines of code (SLOC) metric, the two appli-
cations are of comparable size. The BookStore codebase without
comments amounts to 737 lines (including build system configu-
ration), and the Xox equivalent amounts to 1018 lines. Although
migrating Xox touches fewer methods, the transitive REST concepts
and annotations needed for a successful migration are identical for
both applications.

4 Execution
Recruitment and study execution were carried out from June to Au-
gust 2022. We launched an extensive recruitment campaign reach-
ing out to industrial engineers, engineering students and academic
colleagues. We used various mailing lists, sent invitations directly,
and recruited using a dedicated web page. All material and software
described in this section are included in the replication package.

Recruitment contained a preliminary self-assessment form,which
we used to filter participants who did not fulfil the minimum re-
quired technical proficiency. In total, we recruited 28 subjects from
approximately equal shares of academic, student and industrial
backgrounds.

We ran several pilot studies to ensure the two conversion tasks
could be completed within two hours. Due to pandemic precau-
tions, participants were allowed to use their own computer setup,
with the option to access a lab-provided workstation as a fallback.
Participation was rewarded with an Amazon gift card equivalent
to approximately 75 USD in local currency. We did not perform a
sample size estimation, because in our study the population size
was limited by the available funding.

Give me some REST MODELS ’24, September 22–27, 2024, Linz, Austria

4.1 Group Allocation
Participant recruitment included filling out a self-assessment form
regarding experiment-relevant skills. Applicants were asked to de-
clare their proficiency for the Spring framework, the Maven build
system, the MDE tool TouchCORE, Command Line usage, the REST
paradigm, the Singleton pattern, and Reflection (i.e., the program-
ming language concept). We provided a textual metric for the self-
assessment, to bring some objectiveness to the declared level of
proficiency, on a scale of one to five. Listing 1 illustrates the assess-
ment by presenting the questions regarding the Singleton pattern:

We used the self-assessment forms not only to ensure sufficient
proficiency for participation but also to counter group bias. While
initial observations on the population are common in crossover
studies [7], experiments with a large number of participants usually
rely on randomization to balance groups [5]. While the total popu-
lation size is in line with comparative controlled experiments [25],
we were concerned about group bias, given only 7 participants per
group resulting from the presented factorial layouts.

For the allocation of participants to individual groups, we there-
fore did not rely on randomization, but we applied a heuristic to
ensure comparable skills between groups.

How much do you know about the s i n g l e t o n p a t t e r n ?
1 [] I don ' t know what i t i s
2 [] I know what i t i s , but have never used i t
3 [] I have a l r e a d y used i t i n one o f my p r o j e c t s
4 [] I cou ld v e r i f y a p rov ided imp lemen ta t i on
5 [] I cou ld implement i t r i g h t away from s c r a t c h

Listing 1: Recruitment Self Assessment Form Excerpt

Specifically, the heuristic aims at minimizing the maximum dis-
tance in average skill proficiency between groups (MiniMax). Fig-
ure 2 shows the outcome of the balancing process. Distributions
of the same colour represent the four resulting groups for each of
the seven assessed skills. We observe that groups are reasonably
comparable on all assessed skills. However, it is important to retain
that, despite efforts for objectivity, self-assessments are by nature
subjective. The participants’ factual skills may deviate from their
stated skills.

Figure 2: Skill Distributions Across Groups

4.2 Training
Both experiment tasks are preceded by a dedicated training phase,
where participants are familiarized with the methodology to apply.
The training material consists of a video, illustrating key steps of

the migration task on a third, unrelated sample application. For
the manual migration, the video repeats configuration file changes,
and boilerplate code changes needed for migration, as well as the
syntax of REST-specific annotations to decorate and expose existing
legacy functionality. For the DSL tool chain migration, the video
illustrates the usage of the TouchCORE software, how resource
models can be created and linked to models extracted from the
existing legacy functionality, and how code is generated. In both
cases, the video is accompanied by a structured, textual summary
of the main migration steps, providing the essential technical back-
ground. The training does not contain any information specific to
the actual study objects. Videos and textual summaries are part
of a sequential, easy-to-navigate website that guides participants
through their study sequence.

4.3 Migration Instructions
The expected migration outcome is provided as a textual REST
interface description. Participants are instructed to migrate the pro-
vided legacy software (object) to a RESTful service, corresponding
to the provided description.
The textual format used as API description is identical for both
tasks and was selected to avoid bias to either methodology, i.e.,
it neither contains full resource location paths, which could be
copy-pasted directly into REST annotations nor does it provide a
graphical visualization of the interface structure as a tree. It merely
explains which operations on resources are expected to give access
to what functionality. The subject must then determine how this
translates to methodology and existing legacy functionality.

Additionally, the instructions contained source code, navigable
JavaDoc and class diagrams illustrating the structure and func-
tionality offered by the legacy application. For fairness, the same
information was provided, regardless of the methodology used for
a given migration task.

4.4 Data Collection
For each migration, we collected the participant-produced source
code and recorded all their on-screen task activity.

• Source code is the final product of each migration, no matter the
treatment. Although for the DSL toolchain, we requested the
submission of all models, we generated the corresponding source
code for comparability. In either case, the outcome includes a
build system configuration, which allows compilation and local
deployment of the produced RESTful service.

• Screen recordings cover all on-screen activity throughout the
entire task, including the training period, i.e., from the moment
of first familiarization with task-related techniques to submission
of the migration outcome.

In addition to task-specific data, we also collected textual partic-
ipant feedback after completion of both study tasks. We provided a
structured template with questions on the perceived relative diffi-
culty of the tasks, questions on the confidence in the correctness
of the outcome, as well as a freely fillable text form to mention
encountered difficulties and methodological preferences.

We analyzed source code and screen recordings concerning cor-
rectness of the produced software, and efficiency of the migration

MODELS ’24, September 22–27, 2024, Linz, Austria Schiedermeier et al.

Figure 3: Distributions of Pass Rates and Conversion Times

process. Both constructs are a common choice to capture the effi-
ciency of a software engineering activity [8].
• Submission correctness was assessed by testing submissions
against the expected target REST interface. We provide a sim-
ple script to determine test results and the resulting ratio, as a
normalized test pass ratio metric. Both sample applications were
intentionally coded without persistence, which enables interde-
pendent testing by simply restarting to reset the service state after
every test. The only exception to this rule were “Get” requests
applied to verify effectiveness of state-changing API requests, i.e.
all “Put”, “Post”, “Delete” requests.

• Migration efficiency was determined by analyzing a total of 72
hours of screen recording and accurately distinguishing between
the "task familiarization" and "task solving" phases. Regarding all
subsequent statistical analysis, time strictly refers to task-solving
activities, not task familiarization.3 We allowed study discon-
tinuation after a minimum effort of 1 hour per task (including
training and material familiarization). However, only one par-
ticipant aborted concerning this threshold. We therefore do not
consider time a censored variable for the study.
Figure 3 depicts per-group distributions of our measurements

for correctness and time constructs. Groups are represented using
colour, the conversion technique, the application and task order are
shown as labels (“#1" = first period, “#2" = second period, whereas
“#*" shows the distribution of the two groups combined). Table 2 lists
the corresponding numeric distribution data, combining samples of
identical application (object) and migration technique (treatment).

5 Analysis
In this section, we present the methodology and results of our statis-
tical analysis. We want to investigate the hypothesis that the DSL
3The original recordings cannot be released, to ensure participant anonymity. As we
are notably interested in understanding tool chain effects, we provide transcripts of
all recordings, listing all observations regarding participant behaviour, potential task
deviations and observed technical issues.

BS: DSL (#∗) BS: Manual (#∗) Xox: DSL (#∗) Xox: Manual (#∗)
(Orange) (Turquoise) (Turquoise) (Orange)

Q4: Max 100.0% / 100.0% / 100.0% / 100.0% /
(Upper whisker) 3060s 8615s 3602s 5084s
Q3: 100.0% / 91.7% / 100.0% / 87.5% /
75% Quartile 2439s 5835s 3043s 3619s
Q2: Median 100.0% / 83.3% / 100.0% / 75.0% /
(Black Bar) 2021s 5069s 2357s 2754s
Average 93.5% / 60.3% / 96.2% / 62.5% /
(White Square) 2091s 5197s 2564s 2881s
Q1: 100.0% / 16.7% / 87.5% / 34.4% /
25% Quartile 1769s 3789s 2096s 2250s
Q0: Min 100.0% / 0.0% / 87.5% / 0.0% /
(Lower Whisker) 1167s 2651s 1955s 1251s

Table 2: Distribution Quartiles, Disregarding Order (#∗)

toolchain provides a significant beneficial effect to software
developers, for the presented migration task. The analysis has two
components, following the general recommendations for crossover
experiments [43]. We apply linear regression models to assess the
relative contribution of multiple experiment factors, concerning the
correctness and efficiency observations (as opposed to investigating
only treatment) (see subsection 5.1). The second component is a
targeted pairwise comparison of pass-rate and migration time dis-
tributions, for when the same application is migrated with different
methodologies (treatments). In the final step, we put the analysis
results into relation and report effect sizes (see subsection 5.2). Note
that all tests reported in this section can be conveniently replicated,
just with a browser, using our replication package.

Outliers: We excluded the data of one participant (i.e., two pro-
duced projects and the corresponding two screen recordings) from
our analysis. The performance measurements were extreme out-
liers (fastest migration, almost no tests passed), and investigation
of the code and screen recording suggested the subject had no in-
terest in training, following the instruction material or producing
meaningful results.

Statistical Inference Corrections: With an increasing number of
tests, there is a rising risk for type-I errors (false positive / falsely
rejecting a hypothesis although it is true). Our analysis showcases
three test families, we therefore apply the Holm-Bonferroni correc-
tion for the tests within each family. These families are 1) F-stat
probability, used to assess the quality of our linear regression mod-
els, 2) testing the statistical significance of individual linear model
variables, and 3) the pairwise comparison of distributions. The
Holm-Bonferroni correction orders p-values within each family
and then uses an adjusted correction on the standard 𝛼 = 0.05
threshold. For convenience, we highlight all p-values that are below
their adjusted 𝛼 level in bold (null hypothesis rejected).

5.1 General Linear Models
We created four general linear models (GLMs), all with migration
methodology (treatment) and task order as explanatory variables.
We then test the models’ explanatory variables for statistical signif-
icance.

Note that this is a repeated measures experiment, with non-
independent measurements (we have two samples per each partici-
pant). The GLMs are therefore designed to contain only one sample

Give me some REST MODELS ’24, September 22–27, 2024, Linz, Austria

Dependent Var. App Prob. F-Stat Explanatory Var. Coef. Std.Error p-value

Pass Rate

BS 0.018
(constant) (53.90) (9.94) (74.41)
(order) (13.76) (11.62) (0.248)
(treatment) (32.67) (11.62) (0.010)

Xox 0.020
constant 64.21 9.52 0.000
order -3.43 11.14 0.761
treatment 33.79 11.14 0.006

Task Time

BS 1.97e-05
constant 5332 449.9 0.000
order -292 526.3 0.584
treatment -3095 526 0.000

Xox 0.059
(constant) (3263) (279.8) (0.000)
(order) (-762) (327.4) (0.029)
(treatment (-288) (327.4) (0.388)

Table 3: General Linear Model Results, four OLS Regressions

per participant, i.e. samples for one legacy application (App), result-
ing in a total of four GLMs. Table 3 lists the model results, based on
an Ordinary Least Squares (OLS) regression, and the p-values for
the statistical significance of each model variable. Note that each
model also reports the quality of its regression (Prob. F-Stat). With
the correction applied, only two models pass this quality check, i.e.
only for twomodels we can reject the null hypothesis that the linear
regression is not better than a flat model, with only constant. We
therefore only interpret the results for these two models: Pass Rate
for Xox, and Task Time for BookStore. The other two models should
not be interpreted, Table 3 therefore shows their model values in
parentheses.

The interpretation of the Pass Rate for Xox, and Task Time for
BookStore models is as follows: In both cases, correlation is only
confirmed (null hypothesis rejected) for constant and treatment. The
absolute coefficient for treatment being of comparable magnitude
as constant means according to this model the migration technique
provides a measurable effect for the observed pass-rate and time
measurement. The models do not provide conclusive evidence re-
garding the relevance of the task order.

5.2 Wilcoxon Rank Sum
We also investigated our initial hypothesis of an assumed benefi-
cial effect of migration technique, by inspecting comparative per-
formance distributions. To increase statistical power, we grouped
observations by application (object), disregarding task order, and
compared how pass-rate and time distributions evolve depending
on the migration technique (treatment) applied. These comparisons
correspond to four null hypotheses: Identical distributions concern-
ing the measured migration time for BookStore, respectively Xox,
and identical distributions concerning the measured test pass-rate
distributions for BookStore, respectively Xox.

We applied the Wilcoxon Rank Sum test for these comparisons.
This test was chosen because it is robust for small sample sizes, and
does not make assumptions on the sample distribution [43] (we
do not know the sample distribution, other than the preliminary
boxplot visualization).

The p-values, in order of appearance of the above null hypothesis,
are: 0.000016 (time, bookstore), 0.35 (time, xox), 0.00489 (passrate
bookstore), 0.00389 (passrate xox). The corresponding interpre-
tation is that for pass-rate measurements of BookStore and Xox,
as well as for time measurements of the BookStore, the migration
technique (treatment) causes a significant effect.

In the case of pass rate for Xox and time for the BookStore,
the GLM models and Wilcoxon results draw a consistent picture,
identifying a significant effect on the migration technique applied.4
We further discuss the Wilcoxon test result for task-time of Xox in
the next Section 6.

5.3 Effect Sizes
The GLM model tests and Wilcoxon Rank Sum tests attested the
significance of the migration technique in several cases. For the
reporting of effect sizes, we compare the evolving of pass-rate and
migration time distributions. Table 2 indicates the numeric quartile
information excluding outliers, except for Average) for the orange
and turquoise boxplots of Figure 3, i.e., the distributions for all
samples of participants working on the same application with the
same migration technique.

We observe a relative average improvement whenever the DSL
technique is applied instead of a manual code migration. The nu-
meric differences in distribution average are as follows: For the
BookStore an average pass rate improvement from 60.3% to 93.5%
(33.2% higher pass rate), at an average task speedup from 5197 to
2091 seconds (3106 seconds faster); for Xox an average pass rate
improvement from 62.5% to 96.2% (34.3% higher pass rate), at an av-
erage task speedup from 2881 to 2564 seconds (317 seconds faster).
In all cases, we also observe a lower variability of the distributions
whenever the DSL technique is applied.

6 Discussion
We now discuss how the quantitative results of our statistical anal-
ysis relate to contextual knowledge and qualitative observations. In
detail, we first discuss individual traits of eithermigration technique,
to explain either offset or absence of offset in concerning developer
performance 6.1. Afterwards, we assess developer feedback and
discuss an observed discrepancy between developer perception and
measured performance 6.2. The section concludes with several crit-
ical factors for the practical success of DSL toolchains. We present
it in the form of a lessons-learned list as a reference for the crafting
of future DSL toolchains 6.3.

6.1 Understanding the Offsets
Lower Test Pass Rate for Manual Conversion: Common to both

applications, is a lower test pass-rate, and higher variance in results,
of the manual migration approach, i.e. based on our experiment
data, switching to a DSL toolchain-guided migration results in
consistently higher test pass-rates. We found several explanations
for this observation.
• Annotation syntax: Analyzed screen recordings revealed that
the participants had recurring difficulties with Spring’s anno-
tation syntax. We frequently observed participants confusing
@PutMapping with @PostMapping, or forgetting an intermediate
resource in the URL string. This error type barely occurred with
participants using the DSL editor counterpart, which could be

4If interpreted, the GLM model (which barely surpasses the corrected f-stat threshold)
would be likewise consistent with the Wilcoxon Rank Sum test results. Note that
failure to reject a null hypothesis is not a conclusive result and statistical inference
corrections bear a risk to introduce type-II errors (failure to reject a null hypothesis
that is actually true).

MODELS ’24, September 22–27, 2024, Linz, Austria Schiedermeier et al.

an indicator for the visual approach to be more intuitive. The
presumption is coherent to the majority of participants also re-
porting the DSL approach as more intuitive in their feedback
form (see Figure 4).

• HTTP parameter types: We noticed recurring issues related to
the mapping of request parameters. We observed several subjects
running online searches for the correct annotation syntax and
subsequently confusing various parameter types (Spring show-
cases similar-looking annotations for different HTTP parameter
types). The study (and consequently also the training material)
only includes resource (variable on resource path) parameters
and HTTP-body parameters, but no HTTP-query parameters. Yet
some participants mistakenly used the syntax for HTTP query
parameters, which resulted in test failures.

• Launch configuration: Task instructions included a modifica-
tion request for the build systems launcher entry, so the cre-
ated REST service can be started from the command line. Four
participants only tested their software in the IDE (using the
green launch icon), rather than launching with the build system
command. Ignoring this small mistake would have drastically
changed the results: A service that is correctly coded, but misses
a launcher configuration will still fail all tests. We therefore de-
cided to correct the mistakes made in the launcher configuration5.
Without the intervention, the observed pass rate distribution for
the manual migration would have been lower than indicated in
this report. Without our intervention, the observed offset com-
pared to the DSL toolchain approach would have been larger.

Slower Manual Conversion for the BookStore. The statistical anal-
ysis shows a significant migration task speedup when the DSL
approach was used for the BookStore. Interestingly no statistically
significant effect is found for Xox. We first provide general reasons
to explain a slower manual conversion, and then discuss why the
observed effect is less important for Xox. 6

• Spring integration: Screen recordings showed that configura-
tion of the configurationMaven build system is a time consuming
activity. In detail, manual migration required editing the project’s
pom.xml configuration file, adding a dependency statement to
the Spring framework and updating the Launcher class reference.
Although these changes are boilerplate activities, were detailed
in the instructions and available as copy-paste-ready configura-
tion snippets, many participants reported issues, and we likewise
observed participants pasting provided snippets in the wrong
place, and overlooking notably the launcher configuration.

• IDE syntax highlighting: In four cases, we observed partici-
pants struggling, associated with the IDE’s syntax highlighting.
Usually, the IDE automatically detects dependencies added to
the pom.xml configuration file and automatically extends syntax
highlighting to the additional dependencies. In four cases, we
observed how participants correctly integrated spring dependen-
cies, but their IDE did not automatically register changes. When

5The original sources in the replication package contain a marker, to indicate our
manual modification.
6Note that in principle, migration time would have been a censored variable because
participants were allowed to discontinue the study once the minimum time had passed.
However, screen recordings revealed that participants continued until their project was
at least compiled (except for the excluded outlier). The vast majority of participants
also selectively tested REST access before submission.

participants then attempted to integrate Spring language con-
structs, they were bombarded with syntax errors. In all cases, the
developers eventually worked their way around the issue with a
manual configuration file reload.

• Dependency injection: We observed recurring issues related
to Spring’s dependency injection mechanism. The manual con-
version commonly requires the incorporation of Spring’s De-
pendency Injections. In simple terms: if one class needs another,
Spring annotations allow highlighting which dependency should
be injected where. The interest is mainly to prevent the active
claiming of dependencies and advocate coding against interfaces.
In the case of BookStore, migration to REST implicitly requires
correct application of dependency injection, to satisfy dependen-
cies between the multiple controller classes, which embed the
functionality to be exposed over REST. Although the concept is
covered in the training material, 7 participant feedbacks forms
explicitly mentioned difficulties experienced with dependency in-
jection, and screen recordings show that even more participants
were struggling. Screen recordings also show that participants
persistently resolve this error by investing additional time.
In the case of Xox, all functionality to expose over REST resides
in a single class, hence there was no dependency injection to
resolve. Consequently, we did not observe a slowdown for man-
ual migrations of Xox. However, Spring applications beyond a
minimal size all exhibit dependency injection. We thus think the
offset measured for the BookStore reflects reality better than the
one of Xox. The issue of Xox not requiring the use of dependency
injection is further discussed in the threats to validity Section 7.

Attributing effects: We can to some extent draw a connection
from the analyzed performance offsets and observed challenges to
MDE concepts, as the main driver of our sample DSL toolchain. The
DSL aims at directing the developer’s attention away from syntax
details, towards the task semantics. The observations of annota-
tion syntax struggles and confusing HTTP parameter types
in the manual approach are plausible representatives to explain
differences in the resulting project correctness. Both issues do not
occur in the DSL toolchain alternative.

We can also see the beneficial effects of code generators as stan-
dard MDE concepts. The observed delays associated with off-the-
shelf build system modifications for launch configuration and
spring integration are plausible factors for a more consistent
and on average shorter migration duration, compared to a higher
variability on the manual approach.

We can also associate the absence of tedious technical issues,
i.e. the confusing IDE syntax highlighting due to undetected
pom.xml changes, and resolving dependency injection, withMDE’s
general ambition to abstract technical intricacies away by efficiently
integrating prepared reusable solutions (which effectively is the
case, for the DSL toolchain internally reuses design models to auto-
matically ensure correct framework integration).

Note that it is not obvious how to draw a line between DSL
effects and standard MDE effects. Unless used for illustrative or
sketching purposes, a DSL cannot be separated from its tailored
MDE transformations. As such, it is not obvious how to attribute
effects to individual toolchain components.

Give me some REST MODELS ’24, September 22–27, 2024, Linz, Austria

Toolchain issues. : Statistical analysis, observations and discus-
sion speak in favour of a beneficial DSL toolchain effect concerning
test pass rates. However, regarding the migration time, we cannot
conclude a beneficial effect as consistently as expected. We be-
lieve this can be explained by the academic nature of the toolchain
implementation, i.e., the toolchain is not production-ready. It is
possible that the beneficial effect would have been observed more
consistently if an industrial toolchain implementation had been
available.
• Crashes: About a third of participants experienced crashes of the
toolchain. Although a dedicated measurement showed the time
losses were minimal, we did not exclude crash times from our
measurements to avoid any bias. Screen observations confirm
that participants rapidly restore their work from checkpoints.

• Navigation: While all participants concluded the toolchain mi-
gration, we observed consistent issues with navigating the soft-
ware. As the name suggests, TouchCORE was originally designed
for tactile screens. Observations from screen recordings suggest
imitating touch gestures by mouse is not intuitive, and itself a
hindering factor.

6.2 Developer Perceptions and Bias
The participant feedback is widely consistent with screen-recording
observations. However, some remarks readjusted our expectations
and understanding.

Issues with the DSL Conversion Technique. Participants repeatedly
noted difficulties navigating the tool’s menus and reported acciden-
tal deletion of already modelled solutions, which was confirmed
by the recordings. For some participants, this resulted in limited
data loss. Overall, we consider that the main challenge using the
DSL toolchain was its instability and handling of the tool’s user
interface. Despite this drawback, all participants succeeded in the
requested migration.

Perceived Time Loss. As previously discussed, the major time
losses observed and reported are problems with Spring integration,
IDE syntax highlighting and using the DSL tool’s user interface.
Interestingly, a frequent mention of perceived time loss was the
training material, notably the task illustration videos. More than
two-thirds of the participants either skipped parts of the video,
increased playback speed, or interleaved task solving with watching
the video instructions. We will discuss in Section 7 how this affects
the validity of our study.

Preference for Manual Conversion. We analyzed the final partici-
pant feedback regarding their preferences concerning both migra-
tion techniques. While the majority of participants deemed the
DSL-driven approach easier (+25/1/-1) or more intuitive (+24/0/-3),
the confidence towards a better performance of the DSL solution
concerning our unit tests was balanced (+13/1/-13), and a major-
ity of participants would not use the DSL technique in its current
state for their own future projects (+6/6/-15). These statistics are
illustrated in Figure 4. Note that the last question, concerning the
participants’ future project preferences was worded regarding the
provided solutions. Participant feedback therefore might be influ-
enced by negative experiences made due to the DSL tool’s academic
nature, rather than a purely methodological perception.

Figure 4: Participant Feedback on Individual Techniques

The participant’s confidence in the correctness of their code
significantly deviates from the measured correctness. Furthermore,
we expected participants would also voice a preference for the
migration technique they considered easier. However, this is not
the case: The vast majority perceived the DSL toolchain technique
as easier, but two-thirds stated they prefer to apply the manual
methodology in the future. Further analysis of free text participant
feedback suggests that developers associate the manual approach
to feeling more in control:
Green Unicorn: “(I prefer) the manual solution, because it gives more control over
the source code."
Green Turtle: “I will most likely stick with IntelliJ as I feel more comfortable coding
everything manually where I have more control."
Yellow Turtle: “Because the code generation process is unknown to me, I’d be more
confident in the manual methodology [...], where I had total control and knew the code
that would run against the tests."

Simultaneously, themain reason formistrust in theDSL toolchain
seemed to be the opacity of the model transformations, especially
concerning code generation. In some cases, the feedback would
even first acknowledge the advantages of the DSL approach, and
then state a preference for manual migration:
Yellow Fox: “I’m always suspicious of auto-generated code"
Yellow Zebra: “(I’m more likely to apply) IntelliJ because it feels more natural [...]."
Green Zebra: “TouchCORE (DSL technique) is more intuitive as it is more visual, but
IntelliJ (manual) approach helps better to understand the underlying mechanism."
and: "(With the manual approach) I know clearer what is going on behind the scenes
compared with the second (DSL) approach."
Blue Zebra: “There’s a lot of boilerplate code in restifying a legacy application, Touch-
CORE (the DLS tool) makes this easier and less error-prone." and: "(I’m more likely to
apply) manual, I’ve had problems with code generation tools in the past"

In summary, the developers majorly consider the DSL approach
easier, but at the same time express a preference for the manual
counterpart. The main reasons are 1) the association of coding
with “being in control" combined with overconfidence in the own
coding skills, and 2) a general mistrust in opaque transformations,
especially in code generators.

6.3 Towards Improved Toolchain Acceptance
We see the previous discussion insights as an important finger-post
towards further improvement of DSL toolchain approaches. The
user feedback suggests the practical acceptance of DSL toolchains
is not just a matter of performance benefits, but also apparel and
applicability. These findings are coherent with previous findings,
concerning the general acceptance of MDE tools in industry [33, 45,
46]. Based on the full feedback we received, and detailed analysis
of our screen recording observation, we infer three main practical
principles to obtain user acceptance, specifically for the design of
future DSL toolchains:

MODELS ’24, September 22–27, 2024, Linz, Austria Schiedermeier et al.

Emphasize traceability and transparency. :We believe any toolchain
must be as transparent as possible to the end user. Developers trust
the compiler, partially due to the obvious link from code state-
ments to execution instructions. Using a debugger, that link is
so transparent, that users even forget the existence of underlying
transformations. In comparison, the model transformation and code
generation taking place in the presented DSL toolchain are opaque
and thus hard to follow by the user. To win user acceptance, a DSL
toolchain must provide clear, immediate traceability of all modelling
choices down to the generated code, to re-establish the developer’s
perception of being in control.

Don’t disrupt, integrate: Developers consider their preferred IDE
a trusted environment, and are naturally reluctant to abandon this
comfort zone. Rather than proposing an orthogonal approach and
fully replacing the IDE, a DSL toolchain should integrate as much
as possible with the existing tools. Multiple participants voiced they
were more likely to embrace the benefits of the DSL-based approach
if the toolchain were integrated as an IDE plugin, rather than a
standalone software. This option combines well with the previous
point, as a plugin could transparently highlight the impact of any
modelling on the corresponding generated code, preserving full
control over the sources. Interestingly, we even collected anecdo-
tal evidence for the purposefulness of the ResTL DSL for manual
migration - one participant opened a text editor in their second,
manual migration task, to create an ASCII imitation of the struc-
tural ResTL DSL, as an intermediate migration activity. Figure 5
shows a capture of their recorded activity.

Figure 5: Participant Imitating the ResTLDSL in a Text Editor

Trust through UX:. Participant feedback predominantly judged
the DSL and mapping process as highly intuitive. However, the user
interface and stability of the toolchain were criticized. Especially
the crashes and the gesture-based user interface were perceived as
tedious respectively unintuitive. While this did not diminish the
outcome of the DSL-based conversion process, we believe that the
instability of the tool influenced trust in the generated outcome.DSL
toolchains cannot credibly claim to foster quality software engineering
unless their implementation is held to the same standards. Especially
in comparison to established, industrial-grade IDEs, a DSL toolchain
approach can only gain acceptance if stability and usability are
equally excellent.

In summary, we believe the mistrust is not due to the DSL and
the associated modelling and model transformation mechanisms
themselves, but due to the way they are presented. Developers
consider IDEs as their trusted work mode. Therefore, the most

straightforward way to improve on acceptance would be to focus
on IDE plugins that include mechanisms to transparently visualize
the resulting transformations at the code level. Such a tool could
offset the factors that we associate with the observed developer
bias and possibly leverage dormant modelling toolchain potential.

7 Threats to Validity
We structure the discussion of factors that potentially weaken the
validity of our findings, according to the four common types of
validity, i.e., construct validity, internal validity, conclusion validity
and external validity [49].

Construct Validity. Duration of a software task and test pass-ratio
are both established and common constructs to measure the success
and efficiency of a software development task [8, 21]. We are only
aware of one participant, who did not try to follow the instructions
in a meaningful way. Analysis of screen recordings and inspecting
of the model and code submission suggested the participant rushed
trough preparation and tasks, and seemingly had no interest in
following the instructions. We considered the corresponding data
and outlier and excluded it from analysis and interpretation.

Internal Validity. The varying skill levels of developers could
influence individual performance. Pearson tests reported no signifi-
cant correlation between any of the self-reported skill levels and
the measured time or pass rate.

In one aspect the DSL toolchain behaved differently on Win-
dows. Participants using Windows did not see method parameter
names when mapping from ResTL to legacy functionality, they
only saw enumerated stub names and parameter type. However,
the omited information was easily accessible in the task material.
Screen recording footage suggests the slowdown for Windows par-
ticipants is negligible, for they immediately consulted the provided
additional software documentation.

The majority of participants did not consume the video instruc-
tions strictly as intended. Increasing playback speed was common,
as well as skipping introductory parts of the video instructions.
In rare cases we observed participants interleaving the video in-
structions with solving their own task. We were able to restore
the effective time spent on the migration task by details analysis
of the screen recordings. It is hard to quantify to which extent
this phenomenon influenced our findings. Additional Pearson tests
(provided in the replication package) did not report a significant
correlation between task familiarization and task-solving time or
pass rate, i.e. we cannot conclude that participants are significantly
slower in their task-solving when they consumed the task training
more rapidly. We observed though that sloppy task familiarization
had anecdotal effects on both techniques, e.g. having to deal with
technical problems whose solutions were clearly explained in the
training.

The task instructions should not favour one of the conversion
techniques. We therefore set on a textual description of the migra-
tion target API outcome (see Section 4.3).

We acknowledge an unintentional difference in manual migra-
tion complexity for the two objects because Xox did not exhibit the
dependency injection challenge. We believe this is a relevant factor

Give me some REST MODELS ’24, September 22–27, 2024, Linz, Austria

for the comparatively low differences in average migration time dif-
ferences for the Xox application. Concerning all other metrics, e.g.
magnitude of interface size or code base complexity, the Bookstore
and Xox are highly comparable.

Conclusion Validity. The statistical analysis was conducted with
great care. We followed the best practices for the given crossover
layout and additionally applied statistical inference corrections
within test families. However, overly conservative corrections also
bear a risk of introducing type-II errors (failing to reject a hypothesis
although it is not true). An example is the first GLM model, which
we did not interpret although the model characteristics would have
supported our initial hypothesis and would have been consistent
with the remaining analysis. We considered only significant results.

External Validity. The largest threat to the external validity, that
is, the generalization of our experiment results to other contexts,
is the recruited population. Skill distributions of students and pro-
fessions are known to differ, and the use of experiments only with
students is often debated regarding external validity [10]. We mit-
igated this risk with efforts to recruit diverse developer profiles,
i.e., we were sending out invitations to developers from various
backgrounds. Some factors are beyond our control, e.g. industrial
engineers might feel less attracted by the compensation offered.

8 Conclusion
We presented a controlled experiment with 28 software develop-
ers to better understand DSL toolchain effects. We investigated
the initial hypothesis of improved developer performance when a
representative software engineering task is addressed with a corre-
sponding DSL toolchain, rather than using manual code changes.

In our case, statistical analysis of developer performance shows a
significant beneficial effect of the DSL toolchain, regarding the test
pass-rate of the outcome. Concerning the time needed for migration
to REST, we likewise observe a significant positive effect of the
DSL toolchain for one sample application, and consistently lower
variability of the process duration for both sample applications.

We discussed the performance differences by relating to qualita-
tive observations, extracted from recorded participant task activity.
We identified several plausible effects of toolchain components, no-
tably the DSL obsoleting error-prone annotation syntax constructs
and automated code generation of critical configuration files. We
see the measurable effects and their associated causes as relevant
empirical evidence for generally assumed DSL and MDE merits.
Subsequently, we compared measured performance offsets to par-
ticipant feedback and concluded a comparatively low acceptance
for the DSL approach. We identified developer confidence in code,
and general mistrust of MDE transformations, especially code gen-
erators, as the main factors for preferring the manual approach. We
then derived recommendations for developers of DSL-associated
tools. Finally, we presented the threads to the validity.

In the future, we could imagine accompanying our work with
a longitudinal study, where we observe how a static population
evolves in performance and perception over a prolonged time. Also,
we would like to extend our observations to further DSL toolchains
and study the influence of demographic factors by extending and
further diversifying the population.

Acknowledgments
The authors were partially funded by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) under the Discovery
Grant program. Jörg Kienzle’s work was also partially funded by
Junta de Andalucía, Spain, under project QUAL21 010UMA, and by
the University of Málaga.

References
[1] Colin Atkinson and Thomas Kühne. 2008. Reducing accidental complexity in

domain models. Software & Systems Modeling 7, 3 (2008), 345–359. https:
//doi.org/10.1007/s10270-007-0061-0

[2] Jean-Michel Bruel, Benoit Combemale, Ileana Ober, and Hélène Raynal. 2015.
MDE in Practice for Computational Science. Procedia Computer Science 51 (2015),
660–669. https://doi.org/10.1016/j.procs.2015.05.182 International Conference
On Computational Science, ICCS 2015.

[3] Antonio Bucchiarone, Kemal Soysal, and Claudio Guidi. 2020. A Model-Driven
Approach Towards Automatic Migration to Microservices. In Software En-
gineering Aspects of Continuous Development and New Paradigms of Software
Production and Deployment, Jean-Michel Bruel, Manuel Mazzara, and Bertrand
Meyer (Eds.). Software Engineering Aspects of Continuous Development and
New Paradigms of Software Production and Deployment: Second International
Workshop, DEVOPS 2019, Vol. 12055. Springer International Publishing, Cham,
15–36. https://doi.org/10.1007/978-3-030-39306-9_2 Series Title: Lecture Notes
in Computer Science.

[4] Cristina Cachero, Santiago Meliá, and Jesús M. Hermida. 2019. Impact of model
notations on the productivity of domain modelling: An empirical study. Informa-
tion and Software Technology 108 (April 2019), 78–87. https://doi.org/10.1016/j.
infsof.2018.12.005

[5] Donald T. Campbell and Julian C. Stanley. 2011. Experimental and quasi-
experimental designs for research. Wadsworth, Belomt, CA.

[6] Mariano Ceccato, Massimiliano Di Penta, Paolo Falcarin, Filippo Ricca, Marco
Torchiano, and Paolo Tonella. 2013. A family of experiments to assess the
effectiveness and efficiency of source code obfuscation techniques. Empirical
Software Engineering (Feb. 2013). https://doi.org/10.1007/s10664-013-9248-x

[7] Thomas Cook, Donald Campbell, and William Shadish. 2001. Experimental
and Quasi-Experimental Designs for Generalized Causal Inference. Wadsworth
Publishing.

[8] África Domingo, Jorge Echeverría, Óscar Pastor, and Carlos Cetina. 2021. Com-
paring UML-Based and DSL-Based Modeling from Subjective and Objective
Perspectives. In Advanced Information Systems Engineering, Marcello La Rosa,
Shazia Sadiq, and Ernest Teniente (Eds.). Springer International Publishing, Cham,
483–498.

[9] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. 2017. Microservices: Yester-
day, Today, and Tomorrow. In Present and Ulterior Software Engineering, Manuel
Mazzara and Bertrand Meyer (Eds.). Springer International Publishing, Cham,
195–216. https://doi.org/10.1007/978-3-319-67425-4_12

[10] Robert Feldt, Thomas Zimmermann, Gunnar R. Bergersen, Davide Falessi, An-
dreas Jedlitschka, Natalia Juristo, Jürgen Münch, Markku Oivo, Per Runeson,
Martin Shepperd, Dag I. K. Sjøberg, and Burak Turhan. 2018. Four commen-
taries on the use of students and professionals in empirical software engineer-
ing experiments. Empirical Software Engineering 23, 6 (Dec. 2018), 3801–3820.
https://doi.org/10.1007/s10664-018-9655-0

[11] Roy Thomas Fielding. 2000. Architectural styles and the design of network -
based software architectures. Ph.D. University of California, Irvine, United
States – California. https://www.proquest.com/docview/304591392/abstract/
D42F954B21D64B61PQ/1 ISBN: 9780599871182.

[12] Roy T. Fielding, Richard N. Taylor, Justin R. Erenkrantz, Michael M. Gorlick, Jim
Whitehead, Rohit Khare, and Peyman Oreizy. 2017. Reflections on the REST
architectural style and "principled design of the modern web architecture" (impact
paper award). In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 2017). Association for Computing Machinery,
New York, NY, USA, 4–14. https://doi.org/10.1145/3106237.3121282

[13] Marios Fokaefs and Eleni Stroulia. 2015. Using WADL specifications to develop
and maintain REST client applications. In 2015 IEEE International Conference on
Web Services. IEEE, Piscataway, NJ, USA, 81–88.

[14] M. Fowler. 2010. Domain-Specific Languages. Pearson Education. https://books.
google.ca/books?id=ri1muolw_YwC

[15] Mahdi Fahmideh Gholami, Farhad Daneshgar, Ghassan Beydoun, and Fethi Rabhi.
2017. Challenges inmigrating legacy software systems to the cloud— an empirical
study. Information Systems 67 (July 2017), 100–113. https://doi.org/10.1016/j.is.
2017.03.008

[16] Jeff Gray. 2007. Domain-Specific Modeling. Handbook of dynamic
system modeling 7, Handbook of dynamic system modeling (2007).

https://doi.org/10.1007/s10270-007-0061-0
https://doi.org/10.1007/s10270-007-0061-0
https://doi.org/10.1016/j.procs.2015.05.182
https://doi.org/10.1007/978-3-030-39306-9_2
https://doi.org/10.1016/j.infsof.2018.12.005
https://doi.org/10.1016/j.infsof.2018.12.005
https://doi.org/10.1007/s10664-013-9248-x
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/s10664-018-9655-0
https://www.proquest.com/docview/304591392/abstract/D42F954B21D64B61PQ/1
https://www.proquest.com/docview/304591392/abstract/D42F954B21D64B61PQ/1
https://doi.org/10.1145/3106237.3121282
https://books.google.ca/books?id=ri1muolw_YwC
https://books.google.ca/books?id=ri1muolw_YwC
https://doi.org/10.1016/j.is.2017.03.008
https://doi.org/10.1016/j.is.2017.03.008

MODELS ’24, September 22–27, 2024, Linz, Austria Schiedermeier et al.

http://scholar.googleusercontent.com/scholar?q=cache:Ss4EaIQUb80J:
scholar.google.com/+Jeff+Gray,+Juha-Pekka+Tolvanen,+Steven+Kelly,
+Aniruddha+Gokhale,+Sandeep+Neema,+and+Jonathan+Sprinkle.+2007.
+Domain-Specific+Modeling&hl=en&as_sdt=0,5

[17] Jeff Gray, Kathleen Fisher, Charles Consel, Gabor Karsai, Marjan Mernik, and
Juha-Pekka Tolvanen. 2008. DSLs: The Good, the Bad, and the Ugly. In Com-
panion to the 23rd ACM SIGPLAN Conference on Object-Oriented Programming
Systems Languages and Applications (Nashville, TN, USA) (OOPSLA Compan-
ion ’08). Association for Computing Machinery, New York, NY, USA, 791–794.
https://doi.org/10.1145/1449814.1449863

[18] John Hutchinson, Jon Whittle, and Mark Rouncefield. 2014. Model-driven en-
gineering practices in industry: Social, organizational and managerial factors
that lead to success or failure. Science of Computer Programming 89 (Sept. 2014),
144–161. https://doi.org/10.1016/j.scico.2013.03.017

[19] John Hutchinson, Jon Wittle, Mark Rouncefield, and Steinar Kristoffersen. 2011.
Empirical Assessment of MDE in Industry (33rd International Conference on
Software Engineering (ICSE 2011)). IEEE, Piscataway, NJ.

[20] A. Jedlitschka and D. Pfahl. 2005. Reporting guidelines for controlled experiments
in software engineering. In 2005 International Symposium on Empirical Software
Engineering, 2005. IEEE, Noosa Heads, QLD, Australia, 10 pp. https://doi.org/10.
1109/ISESE.2005.1541818

[21] Stephen H. Kan. 2003. Metrics and Models in Software Quality Engineering (second
edition ed.). Addison Wesley.

[22] Richard B. Kieburtz, Laura McKinney, Jeffrey M. Bell, James Hook, Alex Kotov,
Jeffrey Lewis, Dino P. Oliva, Tim Sheard, Ira Smith, and Lisa Walton. 1996. A Soft-
ware Engineering Experiment in Software Component Generation. In Proceedings
of the 18th International Conference on Software Engineering (Berlin, Germany)
(ICSE ’96). IEEE Computer Society, USA, 542–552.

[23] Jörg Kienzle. 2023. TouchCORE. http://touchcore.cs.mcgill.ca/
[24] Jörg Kienzle, Gunter Mussbacher, Benoit Combemale, and Julien Deantoni. 2019.

A unifying framework for homogeneous model composition. Software & Systems
Modeling 18, 5 (03 Jan 2019), 3005–3023. https://doi.org/10.1007/s10270-018-
00707-8

[25] Amy J. Ko, Thomas D. LaToza, and Margaret M. Burnett. 2015. A practical guide
to controlled experiments of software engineering tools with human participants.
Empir. Softw. Eng. 20, 1 (2015), 110–141. https://doi.org/10.1007/s10664-013-9279-
3

[26] Tomaž Kosar, Sašo Gaberc, Jeffrey C. Carver, and Marjan Mernik. 2018. Program
comprehension of domain-specific and general-purpose languages: replication of
a family of experiments using integrated development environments. Empirical
Software Engineering 23, 5 (2018), 2734–2763. https://doi.org/10.1007/s10664-
017-9593-2

[27] Tomaž Kosar, Marjan Mernik, and Jeffrey C. Carver. 2012. Program compre-
hension of domain-specific and general-purpose languages: comparison using a
family of experiments. Empirical Software Engineering 17, 3 (June 2012), 276–304.
https://doi.org/10.1007/s10664-011-9172-x

[28] Simon Maple and Andrew Binstock. 2018. JVM Ecosystem Report 2018 - About
your Platform and Application. https://snyk.io/blog/jvm-ecosystem-report-
2018-platform-application/ https://snyk.io/blog/jvm-ecosystem-report-2018-
platform-application/.

[29] Yulkeidi Martínez, Cristina Cachero, and Santiago Meliá. 2014. Empirical study
on the maintainability of Web applications: Model-driven Engineering vs Code-
centric. Empirical Software Engineering 19, 6 (Dec. 2014), 1887–1920. https:
//doi.org/10.1007/s10664-013-9269-5

[30] Mark Masse. 2011. REST API Design Rulebook. O’Reilly Media. https://www.
oreilly.com/library/view/rest-api-design/9781449317904/

[31] Andreas Menychtas, Christina Santzaridou, George Kousiouris, Theodora Var-
varigou, Leire Orue-Echevarria, Juncal Alonso, Jesus Gorronogoitia, Hugo Brune-
liere, Oliver Strauss, Tatiana Senkova, Bram Pellens, and Peter Stuer. 2013.
ARTIST Methodology and Framework: A Novel Approach for the Migration
of Legacy Software on the Cloud. In 2013 15th International Symposium on Sym-
bolic and Numeric Algorithms for Scientific Computing. IEEE, Timisoara, Romania,
424–431. https://doi.org/10.1109/SYNASC.2013.62

[32] Mulesoft. 2023. RAML Language Definition. https://github.com/raml-org/raml-
spec

[33] Richard F. Paige and Dániel Varró. 2012. Lessons learned from building model-
driven development tools. Software & Systems Modeling 11, 4 (Oct. 2012), 527–539.
https://doi.org/10.1007/s10270-012-0257-9

[34] API Platform Postman. 2023. 2023 State of the API Report | API
Technologies. https://www.postman.com/state-of-api/api-technologies/
https://www.postman.com/state-of-api/api-technologies/.

[35] Kate Revoredo, Djordje Djurica, and Jan Mendling. 2021. A study into the practice
of reporting software engineering experiments. Empirical Software Engineering
26, 6 (Nov. 2021), 113. https://doi.org/10.1007/s10664-021-10007-3

[36] Roberto Rodríguez-Echeverría, Fernando Maclas, Vlctor M. Pavón, José M.
Conejero, and Fernando Sánchez-Figueroa. 2014. Generating a REST Ser-
vice Layer from a Legacy System. In Information System Development, María
José Escalona, Gustavo Aragón, Henry Linger, Michael Lang, Chris Barry, and

Christoph Schneider (Eds.). Springer International Publishing, Cham, 433–444.
https://doi.org/10.1007/978-3-319-07215-9_35

[37] Maximilian Schiedermeier. 2024. Artifacts for RESTify Experiment. Data, custom
tools, and material used and collected throughout the experiment. https:
//doi.org/10.5281/zenodo.12555385 Publisher: Zenodo.

[38] Maximilian Schiedermeier, Jörg Kienzle, and Bettina Kemme. 2021. FIDDLR:
streamlining reuse with concern-specific modelling languages. In Proceedings of
the 14th ACM SIGPLAN International Conference on Software Language Engineering
(SLE 2021). Association for Computing Machinery, New York, NY, USA, 164–176.
https://doi.org/10.1145/3486608.3486913

[39] S M Sohan, Frank Maurer, Craig Anslow, and Martin P. Robillard. 2017. A study
of the effectiveness of usage examples in REST API documentation. In 2017 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
Raleigh, NC, 53–61. https://doi.org/10.1109/VLHCC.2017.8103450

[40] Klaas-Jan Stol and Brian Fitzgerald. 2018. The ABC of Software Engineering
Research. ACM Transactions on Software Engineering and Methodology 27, 3 (July
2018), 1–51. https://doi.org/10.1145/3241743

[41] Swagger. 2023. API Code & Client Generator | Swagger Codegen. https://
swagger.io/tools/swagger-codegen/ https://swagger.io/tools/swagger-codegen/.

[42] Arie van Deursen, Paul Klint, and Joost Visser. 2000. Domain-Specific Languages:
An Annotated Bibliography. SIGPLAN Not. 35, 6 (jun 2000), 26–36. https:
//doi.org/10.1145/352029.352035

[43] Sira Vegas, Cecilia Apa, and Natalia Juristo. 2016. Crossover Designs in Software
Engineering Experiments: Benefits and Perils. IEEE Transactions on Software
Engineering 42, 2 (Feb. 2016), 120–135. https://doi.org/10.1109/TSE.2015.2467378
Conference Name: IEEE Transactions on Software Engineering.

[44] PhillipWebb, Dave Syer, Josh Long, Stéphane Nicoll, RobWinch, AndyWilkinson,
Marcel Overdijk, Christian Dupuis, Sébastien Deleuze, Michael Simons, Vedran
Pavić, Jay Bryant, and Madhura Bhave. 2018. Spring Boot Reference Guide.
(2018).

[45] Jon Whittle, John Hutchinson, Mark Rouncefield, Håkan Burden, and Rogardt
Heldal. 2013. Industrial Adoption of Model-Driven Engineering: Are the Tools
Really the Problem? In Model-Driven Engineering Languages and Systems, David
Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern,
John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Stef-
fen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard
Weikum, Ana Moreira, Bernhard Schätz, Jeff Gray, Antonio Vallecillo, and Peter
Clarke (Eds.). Vol. 8107. Springer Berlin Heidelberg, Berlin, Heidelberg, 1–17.
https://doi.org/10.1007/978-3-642-41533-3_1 Series Title: Lecture Notes in Com-
puter Science.

[46] Jon Whittle, John Hutchinson, Mark Rouncefield, Håkan Burden, and Rogardt
Heldal. 2017. A taxonomy of tool-related issues affecting the adoption of model-
driven engineering. Software & Systems Modeling 16, 2 (May 2017), 313–331.
https://doi.org/10.1007/s10270-015-0487-8

[47] D. Wile. 2003. Lessons learned from real DSL experiments. In 36th Annual Hawaii
International Conference on System Sciences, 2003. Proceedings of the. 10 pp.–.
https://doi.org/10.1109/HICSS.2003.1174893

[48] Claes Wohlin, Martin Höst, and Kennet Henningsson. 2003. Empirical Research
Methods in Software Engineering. In Empirical Methods and Studies in Software
Engineering, Gerhard Goos, Juris Hartmanis, Jan Van Leeuwen, Reidar Conradi,
and Alf Inge Wang (Eds.). Vol. 2765. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 7–23. https://doi.org/10.1007/978-3-540-45143-3_2 Series Title: Lecture
Notes in Computer Science.

[49] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in Software Engineering. Springer Berlin
Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29044-2

http://scholar.googleusercontent.com/scholar?q=cache:Ss4EaIQUb80J:scholar.google.com/+Jeff+Gray,+Juha-Pekka+Tolvanen,+Steven+Kelly,+Aniruddha+Gokhale,+Sandeep+Neema,+and+Jonathan+Sprinkle.+2007.+Domain-Specific+Modeling&hl=en&as_sdt=0,5
http://scholar.googleusercontent.com/scholar?q=cache:Ss4EaIQUb80J:scholar.google.com/+Jeff+Gray,+Juha-Pekka+Tolvanen,+Steven+Kelly,+Aniruddha+Gokhale,+Sandeep+Neema,+and+Jonathan+Sprinkle.+2007.+Domain-Specific+Modeling&hl=en&as_sdt=0,5
http://scholar.googleusercontent.com/scholar?q=cache:Ss4EaIQUb80J:scholar.google.com/+Jeff+Gray,+Juha-Pekka+Tolvanen,+Steven+Kelly,+Aniruddha+Gokhale,+Sandeep+Neema,+and+Jonathan+Sprinkle.+2007.+Domain-Specific+Modeling&hl=en&as_sdt=0,5
http://scholar.googleusercontent.com/scholar?q=cache:Ss4EaIQUb80J:scholar.google.com/+Jeff+Gray,+Juha-Pekka+Tolvanen,+Steven+Kelly,+Aniruddha+Gokhale,+Sandeep+Neema,+and+Jonathan+Sprinkle.+2007.+Domain-Specific+Modeling&hl=en&as_sdt=0,5
https://doi.org/10.1145/1449814.1449863
https://doi.org/10.1016/j.scico.2013.03.017
https://doi.org/10.1109/ISESE.2005.1541818
https://doi.org/10.1109/ISESE.2005.1541818
http://touchcore.cs.mcgill.ca/
https://doi.org/10.1007/s10270-018-00707-8
https://doi.org/10.1007/s10270-018-00707-8
https://doi.org/10.1007/s10664-013-9279-3
https://doi.org/10.1007/s10664-013-9279-3
https://doi.org/10.1007/s10664-017-9593-2
https://doi.org/10.1007/s10664-017-9593-2
https://doi.org/10.1007/s10664-011-9172-x
https://snyk.io/blog/jvm-ecosystem-report-2018-platform-application/
https://snyk.io/blog/jvm-ecosystem-report-2018-platform-application/
https://doi.org/10.1007/s10664-013-9269-5
https://doi.org/10.1007/s10664-013-9269-5
https://www.oreilly.com/library/view/rest-api-design/9781449317904/
https://www.oreilly.com/library/view/rest-api-design/9781449317904/
https://doi.org/10.1109/SYNASC.2013.62
https://github.com/raml-org/raml-spec
https://github.com/raml-org/raml-spec
https://doi.org/10.1007/s10270-012-0257-9
https://www.postman.com/state-of-api/api-technologies/
https://doi.org/10.1007/s10664-021-10007-3
https://doi.org/10.1007/978-3-319-07215-9_35
https://doi.org/10.5281/zenodo.12555385
https://doi.org/10.5281/zenodo.12555385
https://doi.org/10.1145/3486608.3486913
https://doi.org/10.1109/VLHCC.2017.8103450
https://doi.org/10.1145/3241743
https://swagger.io/tools/swagger-codegen/
https://swagger.io/tools/swagger-codegen/
https://doi.org/10.1145/352029.352035
https://doi.org/10.1145/352029.352035
https://doi.org/10.1109/TSE.2015.2467378
https://doi.org/10.1007/978-3-642-41533-3_1
https://doi.org/10.1007/s10270-015-0487-8
https://doi.org/10.1109/HICSS.2003.1174893
https://doi.org/10.1007/978-3-540-45143-3_2
https://doi.org/10.1007/978-3-642-29044-2

	Abstract
	1 Motivation
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Experimental Design
	3.1 Layout Details
	3.2 Treatments
	3.3 Objects

	4 Execution
	4.1 Group Allocation
	4.2 Training
	4.3 Migration Instructions
	4.4 Data Collection

	5 Analysis
	5.1 General Linear Models
	5.2 Wilcoxon Rank Sum
	5.3 Effect Sizes

	6 Discussion
	6.1 Understanding the Offsets
	6.2 Developer Perceptions and Bias
	6.3 Towards Improved Toolchain Acceptance

	7 Threats to Validity
	8 Conclusion
	References

