
A Concern-Oriented Software Engineering Methodology for
Micro-Service Architectures

Maximilian Schiedermeier
max.schiedermeier@mcgill.ca

McGill University
Montréal, Canada

ABSTRACT
Component-Based Systems (CBS) allow for the construction of
modular, highly scalable software. Decomposing a system into in-
dividually maintainable and deployable components enables a tar-
geted replication of performance bottlenecks, and promotes code
modularity. Over the last years, the Micro-Service Architecture
(MSA) style has become a popular approach to maximize the bene-
fits of CBS. However, MSA introduces new challenges, by imposing
a conceptual and technological stack on adherent projects, which
require new critical design choices. Throughout my PhD I want to
investigate to which extent a systematic reuse of MSA solutions of
various granularity can streamline MSA application development
by guiding design decisions.

CCS CONCEPTS
• Software and its engineering→Domain specific languages;
Reusability; Interface definition languages; Model-driven software
engineering; Abstraction, modeling and modularity; • Com-
puter systems organization→ Client-server architectures; • Net-
works→ Network performance modeling.

KEYWORDS
Micro-Service Architectures, Model-Driven Engineering, Concern-
Oriented Reuse, Representational State Transfer

ACM Reference Format:
Maximilian Schiedermeier. 2020. A Concern-Oriented Software Engineer-
ing Methodology for Micro-Service Architectures. In ACM/IEEE 23rd Inter-
national Conference on Model Driven Engineering Languages and Systems
(MODELS ’20 Companion), October 18–23, 2020, Virtual Event, Canada. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3417990.3419488

1 INTRODUCTION
The modular character of component-based systems (CBS) leads
to two advantages over monolithic software: the code is more co-
herent and loosely coupled, and performance bottlenecks can be
replicated more easily. The Micro-Service Architecture (MSA) style,
has positioned itself as a popular CBS representative that maximizes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8135-2/20/10. . . $15.00
https://doi.org/10.1145/3417990.3419488

these advantages. The most outstanding difference to its predeces-
sor, "Service-Oriented Architecture" (SOA), is finer grained services
that expose their functionality exclusively over REST interfaces
[16]. The latter eliminates the need for a protocol translating bus,
which is considered a potential bottleneck. However, while finer
grained services increase the advantages of modularity, they can
also constitute a trade-off against performance [9] [13], because
more services also lead to increased traffic.

Although MSA promotes desirable characteristics, the style also
introduces new challenges. Engineers are confronted with a com-
plex stack of additional technological and conceptual choices that
require thorough design decisions. Still, many of these choices
showcase a recurring character and have standard solutions. Poten-
tial alternatives can be accurately captured by feature models, to
promote techniques from Model-Driven Engineering (MDE). How-
ever, the combinatoric outcome can be overwhelming to the user.
Furthermore, the consequences of different choices are often hard
to predict, which is why engineers seek tools to assists MDE’s im-
plicit decision-making, and enable a more streamlined exploration
process, with direct feedback on the impact of different choices.

The development of such a tool is challenging, because MSA
related solutions cannot always readily be encapsulated as a ser-
vice. Solutions often cross-cut the internals of different services.
Therefore, a purely component-oriented reuse, where off-the-shelf
solutions are selected from a reusable component library, is too
course grained to be unrestrictedly applicable to an MSA context.
However, a concern-oriented approach tailors the granularity of
reuse, as it considers solutions that cross-cut services.

Throughoutmy PhD I seek to investigate towhich extent concern-
oriented reuse can promote the vision of streamlined design deci-
sion making for MSA applications. This goal is challenging in two
aspects: The MSA style is still relatively young and keeps evolving.
Therefore identified solutions must regularly be put into question,
and uprising trends must be followed. Secondly, many MSA re-
lated solutions are too context-dependent to allow an off-the-shelf
integration. Additional models, that accurately describe further cus-
tomization are required, prior to an effective integration of adapted
solutions into an applicative base context. Streamlined MSA design
will thus require additional domain-specific languages to express
reusable solutions at a meaningful level of abstraction.

2 RELATEDWORK
The general idea of leveraging MSA design with a streamlined de-
cision and configuration process builds on top of several building
blocks, which are presented in this section.

https://doi.org/10.1145/3417990.3419488
https://doi.org/10.1145/3417990.3419488

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Maximilian Schiedermeier

The following list compiles articles that either deal with, or indi-
rectly support an identification of essential MSA challenges and
solution strategies:

• In [10], Zündorf et al., identify and capture common techno-
logical MSA choices, based on an Internet of Things (IoT) case
study. The authors acknowledge the benefits of a stream-
lined guiding through meaningful design choices. However,
it is unclear to which extent their work is applicable to our
context. The IoT domain renders the case study unrepre-
sentative for an MSA context. Furthermore their discussion
is limited to technological variability. Many reusable MSA
concepts are not bound to a specific technology.

• In [7], Kakivaya et al. describe Service Fabric, Microsoft’s
Cloud Platform for the development of Micro-Service appli-
cations. Although the paper is specifically scoped to a single
product, the authors accurately describe common MSA chal-
lenges and solutions. This provides us with valuable insights
on common MSA reuse candidates.

• In[1], Dragoni et al. discuss the backgrounds that lead to the
emergence of MSA. The authors discuss recurring style con-
cepts and argue how those address common MSA challenges.
The study also covers a section of challenges that are not
yet satisfyingly answered by MSA. Unfortunately the article
does not consider models that would allow to express the
observed variability, for a later systematic reuse.

• In [9], Rademacher et al. investigate how the evolution of
SOA to MSA affected model-driven engineering. The arti-
cle contains a compilation of typical conceptual MSA best
practices and solutions. The authors put these observation
in relation to the predecessor SOA. They also share our un-
derstanding that the matter of reuse should not be bound to
a specific level of abstraction or granularity. Yet the study
provides no insight on how variability could be accurately
captured through models.

• In [4], Halin et al. present a novel product line approach
based on the open-source software JHipster [11]. While JHip-
ster allows sampling web-related configurations and code,
the software did at the moment of writing not yet target
an MSA context. The authors present a feature model that
organizes JHipster’s reusable concepts and provides valu-
able insights on how to express variability. However, the
feature model barely covers concepts for non-monolithic
architectures, such as different load-balancing strategies.

• A de-facto standard for MSA is inter-service communication
through REST interfaces. In [3], Roy Fielding, the author of
the REST style, summarizes fundamental style paradigms
and clarifies common misunderstandings. This specification
is highly relevant for the crafting of models that express
service interfaces at a meaningful level of abstraction.

There currently is no concern-oriented approach for the stream-
lined development of MSA applications. However the venture can
benefit of concern-oriented best practices, gained on monolithic
systems.

• In [15], Schöttle et al. present TouchCORE. This software ex-
poses the Concern-Oriented Reuse (CORE) paradigm though

a multi-touch enabled user interface. TouchCORE is a rea-
sonable starting point for our venture, because its included
Concern-Oriented Reuse implementation targets the system-
atic modularization and packaging of tested and proven
design solutions. Those concerns are made available in a
reusable concern library to support the streamlined selection
and integration into a base applications. However, Touch-
CORE was developed for monolithic applications and there-
fore neither includes MSA-related concerns, nor does its
integrated code generator support non-monolithic software.

• Concern-oriented reuse highly relies on integrating selected
models into a application base context model. This process
is called weaving. In [5], Horcas et al. present a concept to
express variability, user selections and weaving strategies.
Although their approach is related to our envisioned method-
ology, the authors do not discuss whether their concept is
applicable for non-monolithic software.

• A potential starting point to our venture is [8], where Kienzle
et al. discuss the general possibility of combining concern-
oriented reuse with component-oriented software engineer-
ing. Since MSA applications are component-based systems,
and some solutions can be modelled at component gran-
ularity, the discussion is highly relevant for our purpose.
However, the study is limited to a general discussion of po-
tential benefits and expected challenges.

An essential advantage of a concern-oriented MSA design pro-
cess is the possibility to receive direct feedback on the impact of
specific design choices on software qualities. Given the MSA con-
text, we will prioritize feedback on expected performance scaling
over other relevant software qualities, such as resource efficiency,
maintainability and reliability. We want to benefit from existing
simulation based predictions that operate on component-based
models. We believe that the required input models can be generated
from user-provided high level design choices.

• In [12], Reussner et al. describe Palladio, a performance sim-
ulation tool for component-based systems. Based on input
models that define components, deployment on hardware,
usage profiles, and functional dependencies, Palladio runs
a response time simulation for queries entering the system.
This provides insight on a deployment configuration’s over-
all scaling behaviour. A potential downside of the approach
is that the simulations can be resource intensive. This could
hinder timely user feedback throughout the exploration of
configurations.

• In [2], Eismann et al. discuss the advantages of hybrid perfor-
mance simulations. Those are a combination of component-
based simulations and statistical estimations. The authors ar-
gue that this approach can provide faster simulations, while
preserving general applicability.We could imagine to acceler-
ate predictions using such a hybrid mechanism if responsive-
ness is an issue. It is however currently unclear to which ex-
tent a hybrid approach is compatible with concern-oriented
reuse. Hybrid approaches require statistical benchmark data
at the component level. In a concern-oriented methodology
such data does not necessarily exist.

A Concern-Oriented Software Engineering Methodology for Micro-Service Architectures MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

3 PROPOSED SOLUTION: A CONCERN-
ORIENTED APPROACH TO MSA
DEVELOPMENT

We suggest to streamline design decisions based on a concern-
oriented reuse approach. This means that for any recurring MSA
problem, the user is guided through her different solution alterna-
tives and provided with minimal but valuable information on the
impact of different choices. This enables fast but informed decision-
making. Thanks to CORE [15], the most suitable solution can be
integrated into the application base. Novel to this approach is that
the offered solutions are decoupled from service-level granularity.
Compared to component-oriented reuse, where every solution has
to be modularized and encapsulated as a specific service, concern-
oriented reuse targets solutions that cross-cut components or affect
their interplay.

The key parts to our proposal relate the existing approaches as
follows:

• To enable reuse, the user must have access to a meaningful
compilation of articles on MSA challenges and the corre-
sponding solutions. We suggest to group technical solutions,
mentioned in MSA specific contritions by the problem they
address. Specifically we want to consider the overlaps of the
following studies, to compile an initial MSA specific concern
library: [7], [9], [10], [6]

• In existing concern-oriented frameworks, user selected so-
lutions require further customization before they can be
integrated into a base context. It is expectable that this re-
quirement also holds for the MSA context. We suggest to
analyse individual concerns of our initial library for meaning-
ful customization abstractions. We consider the integration
of concern-provided Domain-Specific-Languages (DSLs) for
a more concern-tailored configuration process.

• As we propose an informed decision making, the user has
to be provided with insightful feedback on the impact of
her choices. We suggest to focus initially on performance
estimations, as those are the primary motivation for MSA
in the first place. We propose to gain reliable performance
estimation through existing component-based simulation
software [2] ,[12]. Model transformations can be used to
generate the required simulation input data from the user’s
design choices.

• We suggest an approach based on model weaving for the
integration of selected solutions into an application base
context. TouchCORE [15] already supports model-weaving
for monolithic applications. We suggest to translate these
algorithms to newly introduced MSA-specific models. If the
current weaving patterns are not applicable, we want to rely
on more elaborate patterns as described in [5].

4 PLANNED EVALUATION
We consider the following criteria to evaluate whether the proposed
methodology is beneficial to a more streamlined MSA application
design:

• Concern coverage: A critical factor is whether the provided
concerns are relevant and sufficient for an effective MSA

design. This can be validated empirically, by realizing a rep-
resentative case study, entirely relying on the provided con-
cern library. We suggest to perform this validation based on
a common MSA test application, the Teastore [16].

• Correctness: We intend to support model-based code gen-
eration. Therefore, a correct functioning of the produced
application code can be easily verified by unit testing the
modeled service interfaces.

• Usability: By confronting inexperienced users with a tool that
implements our proposedmethodology, we can evaluate how
well requested MSA strategies can be effectively integrated
in a given amount of time.

• Feedback accuracy: The purposefulness of predicting scaling
behaviour based on generated simulation input data can
be validated by comparing the performance predictions to
benchmarks, obtained from the generated application.

5 EXPECTED CONTRIBUTIONS
A key factor to our research, is a successive elicitation of representa-
tive MSA concerns and solutions into a concern library. As our first
contribution, we will elaborate a collection of reusable solutions to
recurring MSA challenges. This can be done based on their occur-
rence in related work and representative case studies. A criteria for
the structuring of this library will be a classification into functional
and non-functional concerns, as well as an arrangement by the
scope of the contained solutions: service cross-cutting, targeting
the interplay of services, or specifically at single-service granularity.

TouchCORE supports the customization of concern solutions.
Yet, so far there has not been a need for additional domain-specific
languages (DSLs) to further guide a solution’s customization. From
our initial experiments with REST technology it seems, that MSA-
related concerns often showcase the need for an extra level of
abstraction, throughout the customization process. We want to
demonstrate the usefulness of a concern-provided DSL for the pur-
pose of further customization. We could also imagine to target
a secondary contribution that concludes which general concern
properties legitimate the integration of a concern-internal DSL. An
aspect of this study would be to investigate why MSA concerns
often require this extra level of abstraction.

Weaving is the process of composing models based on mappings.
It is a key concept for the integration of solutions from our concern
library into an application context. However, weaving requires ho-
mogeneous input models types. In the presence of concern-specific
DSLs, weaving is therefore not directly applicable. We believe that
this gap can be bridged with additional model transformations. We
want to perform a case study on an illustrative MSA concern, to
demonstrate the feasibility of model weaving, despite initial model
incompatibility due to a concern’s customization with a custom
DSL. As our concern library grows we would also like to re-validate
if the described technique is applicable to all DSL-charged concerns
in our library.

We expect another contribution resulting from a support of per-
formance predictions. Since we want to gain insight on expected

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Maximilian Schiedermeier

scaling behaviour through component-based simulations, we must
at some point generate the required input models. To some extent
these inputs change, in correlation to the reuses selected for inte-
gration. Selecting a server-side load-balancer must, for instance,
lead to a different prediction than choosing a client-side load bal-
ancer. Yet we believe that it is possible to synthesize the required
simulation inputs based on the user-provided base context in com-
bination with the user’s reuse selection. Such model conversions
would not only enable performance predictions, they would no-
tably contribute to bridging the semantic gap between concern and
component-oriented models.

6 CURRENT STATUS
In this last section, I summarize the results we have obtained since
the PhD-start in January 2019. Precisely, I present a list of con-
cerns that we extracted from related work, and that we consider
candidates for a MSA-specific concern library. Afterwards, I sum-
marize insights that we have gained while working on a proof of
concept of our methodology on a first representative concern. The
article concludes with a short outline on the upcoming steps of our
research.

6.1 Concern Library Candidates
Based on related work, we identified the following four MSA chal-
lenges as reasonable candidates for an initial concern library:

• Restification, as the process of exposing functionality through
a REST interface. After choosing the desired framework tech-
nology, this concern will allow a user to map from a custom
REST interface on existing method signatures. The target
functionality is then wrapped up as a REST service, and
can from there on be included in a Micro-Service applica-
tion. The granularity of this functional concern is component
cross-cutting, for the concern targets service internals.

• Load balancing deals with strategies that optimize the per-
formance by routing requests alternately to distinct service
representatives. The user can chose between different load-
balancing strategies, such as client-sided or proxy load bal-
ancing. Based on the available resources and the selected
strategy, she is then provided with a performance estima-
tion, produced by an internal, component-based simulation.
The scope of this non-functional concern lies at inter-service
level, because it affects the interplay of services.

• The Consistency concern gathers strategies that ensure a con-
sistent service state for consecutive queries. Consistency is
relevant whenever multiple instances of a stateful service are
deployed. There are various strategies to ensure consistency
, such as outsourcing state to a database, synchronization over
asynchronous side channels, and master-slave replication. All
options have different impacts on high level goals, notably
performance. Depending on the selected reuse, the concern
will target all levels of reuse granularity.

• Access Control deals with concepts that restrict specific ser-
vice functionality to certain users or user groups. There are
again various strategies to ensure access control, ranging
from cryptographic session tokens issued by single-sign-ons, to

static client certificates and repeated credential-based authen-
tication. An access control concern offers the most common
solutions and provides feedback on the expected impacts
on security and performance. The concern operates at inter-
component granularity.

6.2 Methodology, Proof of Concept
Among the concerns listed above, we consider a realization of the
restification concern a straightforward starting point for a general
validation of the proposed methodology. The exposure of internal
functionality through a REST interface is a particularity common
to all Micro-Services. Furthermore, this concern exemplifies the
challenge of customizing a concern at a meaningful level of abstrac-
tion. We want to guide the user toward a pertinent interface design,
while concealing technical implementation details.

We realized this abstraction with a novel DSL that describes
a REST-Interface’s (RIF) layout in form a tree structure and addi-
tionally indicates which CRUD methods are enabled per resource.
Furthermore, we integrated an intuitive RIF editor into TouchCORE
that allows a developer to efficiently create such models. A capture
of this editor in action is displayed in figure 1. RIF models differ
from existing REST-specifications, because they are designed to
exclude some API information, specifically all information that can
be derived from a mapping to existing method signatures. This
decision was made, because the purpose of RIF models is the re-
exposure of existing functionality, not the description of an entire
API.

Figure 1: TouchCORE’s new RIF editor in action. RIF mod-
els enable a re-exposure of existing functionality through
a REST interface. The displayed model originates the
Bookstore case-study [14]. Nodes represent REST-resources,
while round buttons stand for access methods. The abbrevi-
ations Get, Put, Post, Delete indicate whether a method has
been activated.

Our concept of weaving RIF models into a base application relies
on model transformations. Although this part has not yet been
integrated into TouchCORE, we confirmed the feasiability of trans-
lating RIF models to functionality-poor class diagrams. The latter
are class diagrams that reflect all information contained in a RIF
model through dedicated annotations. Still, these class diagrams do

A Concern-Oriented Software Engineering Methodology for Micro-Service Architectures MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

not yet contain any logic from the base application. This transfor-
mation is an intermediary step that enables weaving. Based on a
user provided mapping, the generated class diagrams can be wo-
ven with the class diagrams of a base application. We were able to
manually apply this approach to multiple case studies.

Although at the moment of writing, the restification concern still
requires these manual model operations, we were able to confirm
a general viability of our approach. We used our RIF-editor to
design an interface for a case study application [14], and manually
combined the models into a woven, restified service description.
Using TouchCORE’s integreated code generator we were then able
to generate and operate the corresponding REST-service. All unit
tests, that covered the complete REST interface of our generated
service, passed without errors.

6.3 Outlook
The promising results obtained with restfication leave us optimistic
that there is no general incompatibility between concern-oriented
reuse and MSA. Notably, it seems that concern-specific DSLs are
an elegant way to guide the concern customization process at a
meaningful level of abstraction.

In the near future we plan to automatize the weaving-related
steps that were still performed manually during our previous resti-
fication experiments. Once this functionality has been integrated
into TouchCORE, nothing speaks against an embedded, dedicated
"restification" concern, that can then be tested on more complex
case studies.
In the long run, we want to achieve the same for concerns that
target the interplay of services. Notably the Load Balancing concern
seems to be an appropriate candidate for this venture, also because
it inherently motivates the integration of performance predictions.
In order to achieve this, the most important stages will be:

• Enable TouchCORE support for nonmonolithic base-contexts.
This is an essential precondition to any modeling of service
interplays.

• Support for the conversion of modular TouchCORE projects
to existing component models. This will enable the inte-
gration of performance predictions. Precisely we target the
Palladio Component Model (PCM), which can be used as input
for Palladio’s performance simulator [12].

• Critical re-validation of the concern library as it grows. We
want to assess the relevance of included concerns and so-
lutions, by modelling a generally accepted reference MSA
application, the Teastore [16]. This step might also reveal
other essential MSA concerns, that are yet missing in our
preliminary concern library.

• A user study, where inexperienced users are confronted with
specific concerns and asked to apply them to their own base-
applications. The outcome of this study will be a honest
feedback on the usability of our approach, as well as a con-
frontation with contexts outside of our control or considera-
tion.

The above list indicates that many open challenges remain to
be adressed, before MSA development can practically benefit from

concern-oriented reuse. Still we are looking forward to the upcom-
ing experiments and insights, and remain confident that our work
will advance the state of the art toward a streamlined reuse-oriented
engineering methodology for the design on MSA applications.

REFERENCES
[1] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,

Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. 2017. Microservices: yester-
day, today, and tomorrow. In Present and ulterior software engineering. Springer,
195–216.

[2] Simon Eismann, Johannes Grohmann, Jürgen Walter, Jóakim Von Kistowski,
and Samuel Kounev. 2019. Integrating Statistical Response Time Models in
Architectural Performance Models. In 2019 IEEE International Conference on
Software Architecture (ICSA). IEEE, 71–80.

[3] Roy T Fielding, Richard N Taylor, Justin R Erenkrantz, Michael M Gorlick, Jim
Whitehead, Rohit Khare, and Peyman Oreizy. 2017. Reflections on the REST
architectural style and principled design of the modern web architecture (impact
paper award). In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering. ACM, 4–14.

[4] Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Perrouin,
and Patrick Heymans. 2017. Yo variability! JHipster: a playground for web-apps
analyses. In Proceedings of the Eleventh International Workshop on Variability
Modelling of Software-intensive Systems. 44–51.

[5] Jose-Miguel Horcas, Mónica Pinto, and Lidia Fuentes. 2016. An automatic process
for weaving functional quality attributes using a software product line approach.
Journal of Systems and Software 112 (2016), 78–95.

[6] David Jaramillo, Duy V Nguyen, and Robert Smart. 2016. Leveraging microser-
vices architecture by using Docker technology. In SoutheastCon 2016. IEEE, 1–5.

[7] Gopal Kakivaya, Lu Xun, Richard Hasha, Shegufta Bakht Ahsan, Todd Pfleiger,
Rishi Sinha, Anurag Gupta, Mihail Tarta, Mark Fussell, Vipul Modi, et al. 2018.
Service fabric: a distributed platform for building microservices in the cloud. In
Proceedings of the Thirteenth EuroSys Conference. ACM, 33.

[8] Jörg Kienzle, Anne Koziolek, Axel Busch, and Ralf H Reussner. 2016. Towards
Concern-Oriented Design of Component-Based Systems.. InModComp@MoDELS.
31–36.

[9] Florian Rademacher, Sabine Sachweh, and Albert Zündorf. 2017. Differences
between model-driven development of service-oriented and microservice archi-
tecture. In 2017 IEEE International Conference on Software Architecture Workshops
(ICSAW). IEEE, 38–45.

[10] Florian Rademacher, Sabine Sachweh, and Albert Zündorf. 2019. Aspect-Oriented
Modeling of Technology Heterogeneity in Microservice Architecture. In 2019
IEEE International Conference on Software Architecture (ICSA). IEEE, 21–30.

[11] Matt Raible. 2016. The JHipster mini-book. Lulu. com.
[12] Ralf Reussner, Steffen Becker, Jens Happe, Anne Koziolek, Heiko Koziolek, Klaus

Krogmann, Max Kramer, and Robert Heinrich. 2016. Modeling and Simulating
Software Architectures: The Palladio Approach. The MIT Press.

[13] Nick Rozanski. 2011. Software Systems Architecture: Working with Stakeholders
Using Viewpoints and Perspectives, 2nd Edition. Addison-Wesley Professional.

[14] Maximilian Schiedermeier. 2020. Book-Store Internals Sources. https://github.
com/kartoffelquadrat/BookStoreInternals/.

[15] Matthias Schöttle, Nishanth Thimmegowda, Omar Alam, Jörg Kienzle, and Gunter
Mussbacher. 2015. Feature modelling and traceability for concern-driven software
development with TouchCORE. InCompanion Proceedings of the 14th International
Conference on Modularity. 11–14.

[16] Jóakim von Kistowski, Simon Eismann, Norbert Schmitt, André Bauer, Johannes
Grohmann, and Samuel Kounev. 2018. TeaStore: A Micro-Service Reference
Application for Benchmarking, Modeling and Resource Management Research.
In 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS). IEEE, 223–236.

https://github.com/kartoffelquadrat/BookStoreInternals/
https://github.com/kartoffelquadrat/BookStoreInternals/

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Solution: A Concern- oriented Approach to MSA Development
	4 Planned Evaluation
	5 Expected Contributions
	6 Current Status
	6.1 Concern Library Candidates
	6.2 Methodology, Proof of Concept
	6.3 Outlook

	References

